diplomsko delo
Kaja Čoh (Author), Darja Antolin (Mentor)

Abstract

Mlade matematike v predšolskem obdobju spodbujamo predvsem s tem, da se z njimi pogovarjamo, jim postavljamo izzive v njihovem vsakdanjem okolju ter, da smo aktivno vpeti v njihov sistem spoznavanja matematičnih struktur. Ena izmed temeljnih vsebin na področju matematike, ki jo lahko na svojstven način približamo otrokom, je algebra. Le-ta v zgodnjem obdobju predstavlja spoznavanje različnih vzorcev in raziskovanje, kako jih nadaljevati. V pričujočem diplomskem delu smo se osredotočili predvsem na rastoče vzorce. Teoretični del diplomske naloge opredeljuje pomen algebre v zgodnjem obdobju, predstavlja različne vrste vzorcev, pri čemer je poudarek na rastočih vzorcih in njihovih primerih iz konkretnega didaktičnega materiala. V empiričnem delu pa smo raziskovali uspešnost predšolskih otrok pri nadaljevanju rastočih vzorcev in sicer glede na vrsto rastočega vzorca ter glede na stopnjo zahtevnosti vzorca. Prav tako smo preverjali razlike v uspešnosti nadaljevanja rastočih vzorcev glede na starost in matematične sposobnosti otrok. Raziskava je zajela skupno 70 otrok iz 2. starostnega obdobja in iz 1. razreda osnovne šole. Otrokom smo zastavili štiri realne in abstraktne rastoče vzorce, ki so jih morali nadaljevati v eno ali dve dimenziji, kar pomeni, da so se razlikovali po zahtevnosti. Rezultati so pokazali, da so skoraj vsi otroci znali nadaljevati preprost realni rastoči vzorec, večina otrok je bila uspešna tudi pri nadaljevanju preprostega abstraktnega vzorca in zahtevnejšega realnega vzorca, medtem ko pri nadaljevanju zahtevnejšega abstraktnega vzorca večina otrok ni bila uspešna. Statistično značilne razlike v uspešnosti glede na starost so se pokazale le pri zahtevnejšem abstraktnem vzorcu, kjer se je pokazala prednost najstarejše skupine otrok. Statistično značilne razlike v uspešnosti nadaljevanja rastočih vzorcev so se pokazale tudi glede na matematične sposobnosti otrok.

Keywords

diplomska dela;predšolsko obdobje;algebra;rastoči vzorec;zgodnja matematika;nadaljevanje vzorcev;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UM PEF - Faculty of Education
Publisher: [K. Čoh]
UDC: 373.2.016:51(043.2)
COBISS: 23260936 Link will open in a new window
Views: 989
Downloads: 142
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Growing patterns in preschool
Secondary abstract: During the preschool period, young mathematicians are being encouraged by conversing with them, challenging them in their everyday environment, and by being actively engaged in their learning process of mathematical structures. Algebra is one of the key features of mathematics that can be explained to children in a unique way. During the early development stage, algebra represents learning about various patterns and exploring the continuation of them. In this graduation thesis, we predominately focused on growing patterns. In the theoretical part, we defined the meaning of algebra in the early development stage, presented different types of patterns, with emphasis on the growing patterns and examples of them, found in specific didactics material. In the empirical part, we researched the successfulness of preschool children with continuation of growing patterns with regard to the type and difficulty level of growing patterns. We also investigated the differences in successful continuation of growing patters with regard to children's age and mathematical abilities. 70 children from the second age group and the first grade of primary school were included in the research. The children were given four concrete and four abstract growing patterns, which they had to continue in one or two dimensions, meaning that the growing patterns had various difficulty levels. The results have shown that almost all children were able to continue a simple concrete growing pattern, while most children were also able to continue a simple abstract pattern and a challenging concrete pattern; however, the majority of children were unable to successfully continue a challenging abstract pattern. Statistically significant differences, with regard to the age of children, have been revealed only in the connection with the challenging abstract pattern, which showed that older children have the advantage over younger children. We have also detected statistically significant differences in the successfulness of the continuation of growing patterns in connection with children's mathematical abilities.
Secondary keywords: theses;preschool period;algebra;growing pattern;early mathematics;continuation of patterns;
URN: URN:SI:UM:
Type (COBISS): Bachelor thesis/paper
Thesis comment: Univ. v Mariboru, Pedagoška fak., Oddelek za predšolsko vzgojo
Pages: 52 f.
ID: 10840358