Joso Vukman (Author), Irena Kosi-Ulbl (Author)

Abstract

Let m and n be positive integers with m + n ≠ 0, and let R be an (m + n + 2)!-torsion free semiprime ring with identity element. Suppose there exists an additive mapping D : R → R, such that D(xm + n + 1) = (m + n + 1) xm D(x)xn is fulfilled for all x ∈ R, then D is a derivation which maps R into its center.

Keywords

matematika;algebra;asociativni kolobarji in algebre;odvajanja;kolobarji;polprakolobarji;ne zaključna dela;mathematics;associative rings and algebras;derivations;prime rings;semiprime rings;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM PEF - Faculty of Education
UDC: 512.552
COBISS: 14298632 Link will open in a new window
ISSN: 0161-1712
Views: 1225
Downloads: 352
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary keywords: Matematika;Algebra;Kolobarji (algebra);
URN: URN:SI:UM:
Type (COBISS): Article
Pages: str. 2703-2710
Issue: 17
Chronology: 2005
DOI: 10.1155/IJMMS.2005.2703
ID: 10842673