Ante Graovac (Author), Damir Vukičević (Author), Janez Žerovnik (Author)

Abstract

Recently introduced algebraic Kekulé structures (AKS) describe the ▫$\pi$▫-electron distribution within rings of a conjugated network. The ratio of the AKS countto the classical Kekulé structures count was studied in benzenoid rotagraphs. By considering three representative classes of such rotagraphs, it was shown that this ratio tends towards either 1 or 0, or its value lies between 0 and 1.

Keywords

Kekulé structures;Kekulé structure count;geometric and algebraic Kekulé structures;benzenoids;rotagraph;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FS - Faculty of Mechanical Engineering
UDC: 51:54
COBISS: 10969366 Link will open in a new window
ISSN: 0011-1643
Views: 746
Downloads: 80
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Croatian
Secondary title: O algebarskim i geometrijskim Kekuleovim strukturama u benzenoidnim rotagrafovima
Secondary abstract: Nedavno uvedene algebarske Kekuléove strukture opisuju raspodjelu ▫$\pi$▫-elektrona unutar prstenova konjugirane mreže. Omjer njihovog broja i broja klasičnih Kekuléovih struktura za benzenoidne rotagrafove proučavan je u ovom radu. Razmatranjem triju reprezentativnih klasa ovih rotagrafova pokazano je da promatrani omjer teži prema 0 ili 1, ili pak da njeova vrijednost leži između 0 i 1
Secondary keywords: Kekuléjeve strukture;števec Kekuléjeve strukture;geometrijske in algebrske Kekuléjeve strukture;benzenoidi;rotagraf;
URN: URN:SI:UM:
Type (COBISS): Scientific work
Pages: str. 373-377
Volume: ǂVol. ǂ79
Issue: ǂno. ǂ3
Chronology: 2006
ID: 10846969