magistrsko delo
Abstract
V magistrskem delu smo izdelali glasovno ključavnico na platformi Raspberry Pi. V programskem jeziku Java smo izdelali program, ki s pomočjo mikrofona zajema zvočni signal in iz njega izlušči koeficiente melodičnega kepstruma. Nato smo na podlagi razdalje, izračunane z algoritmom dinamičnega časovnega prileganja, med seboj primerjali in klasificirali posnetke izgovorjave 49 slovenskih besed sedmih različnih oseb. Analizirali smo vpliv števila koeficientov melodičnega kepstruma, dolžine izgovorjene besede, števila samoglasnikov v izgovorjeni besedi, spola govorcev in šuma. Pri posnetkih z razmerjem signal–šum 25 dB je najmanjša dobljena napaka razpoznave znašala 9,45 %, pri posnetkih z razmerjem signal–šum 15 dB pa približno 26,97 %.
Keywords
glasovne ključavnice;dinamično časovno prileganje;koeficienti melodičnega kepstruma;magistrske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2017 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UM FERI - Faculty of Electrical Engineering and Computer Science |
Publisher: |
N. Pušnik |
UDC: |
004.357:004.934.8'1(043.2) |
COBISS: |
20969750
|
Views: |
1083 |
Downloads: |
119 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Voice Lock on Raspberry Pi Platform |
Secondary abstract: |
In the master's thesis, we created a voice lock on the Raspberry Pi platform. In the Java programming language, we created a program that uses a microphone to capture an acoustic signal and extracts the Mel-frequency cepstral coefficients from it. Then, on the basis of the distance, calculated by the dynamic time-matching algorithm, we compared and classified the recordings of the pronunciation of 49 Slovene words by seven different people. We analysed the influence of the number of Mel-frequency cepstral coefficients, the length of the spoken word, the number of vowels in the spoken word, speaker’s gender and noise. For the recordings with a signal-to-noise ratio of 25 dB the minimum detection error was 9.45%, whereas for the recordings with a signal-to-noise ratio of 15 dB detection error increased to 26.97%. |
Secondary keywords: |
voice lock;Raspeberry Pi;dynamic time warping;mel frequency cepstral coefficient; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Master's thesis/paper |
Thesis comment: |
Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Računalništvo in informacijske tehnologije |
Pages: |
X, 71 str. |
ID: |
10850326 |