Saim Emin (Author), Matjaž Valant (Author)

Abstract

We report the synthesis, photocatalytic activity and mechanistic study of a novel heterostructure (HTS) with an efficient charge separation. A ZnO/CuWO4 HTS material is reported for the first time. The nanocomposite (NC) consists of CuWO4 nanoparticles (ca. 200-400 nm) decorated with ZnO nanorods (ca. 30 nm, 100 nm length) and is shown to be a highly active photocatalyst for decomposition of model contaminants including methyl orange and terephthalic acid. The ZnO/CuWO4 interface is shown to be the key for controlling the enhanced activity of the composite material. Transient absorption spectroscopy studies demonstrated that a photoinduced charge transfer across the ZnO/CuWO4 interface increased electron-hole lifetime by 3 orders of magnitude, from < 20 s in ZnO to 30 ms in the ZnO/CuWO4 NC sample. Our findings show that through interface design efficient HTS materials can be prepared for a wide range of photocatalytic applications.

Keywords

CuWO4;nanocomposite;transient absorption spectroscopy;

Data

Language: English
Year of publishing:
Typology: 1.10 - Published Scientific Conference Contribution Abstract (invited lecture)
Organization: UNG - University of Nova Gorica
UDC: 620.1/.2
COBISS: 4881915 Link will open in a new window
Views: 4285
Downloads: 0
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

URN: URN:SI:UNG
Type (COBISS): Not categorized
Pages: Str. 78
ID: 10860536