magistrsko delo
Abstract
Magistrsko delo obravnava optimizacijo tehnoloških parametrov globokega vleka pločevine, ki vplivajo na kakovost izdelkov. Razviti optimizacijski modeli, ki so predstavljeni v magistrski nalogi, temeljijo na rezultatih numeričnih simulacij. Predstavili smo razvoj regresijskih modelov in modelov na osnovi evolucijskega računanja, ki napovedujejo kakovost izdelka po preoblikovalnem postopku s pomočjo matematičnih metod in z genetskim programiranjem. Izdelane modele smo uporabili v algoritmu za optimizacijo z rojem delcev, s katero smo dobili nove vrednosti tehnoloških parametrov. Slednje smo nato uporabili v nadaljnjih numeričnih simulacijah globokega vleka ter rezultate kritično analizirali.
Keywords
pločevina;globoki vlek;računalniške simulacije;genetsko programiranje;optimizacija z rojem delcev;magistrske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2017 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UM FS - Faculty of Mechanical Engineering |
Publisher: |
[K. Popovič] |
UDC: |
004.89:621.983(043.2) |
COBISS: |
21202966
|
Views: |
893 |
Downloads: |
173 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Optimization of the deep drawing parameters using the particle swarm optimization |
Secondary abstract: |
This master thesis presents optimization of deep drawing process parameters that affect metal during deep drawing process. The already developed optimization models in this master thesis are based on the results of numerical simulations. We presented the development of regression models and evolutionary models of surface quality of the sheet metal product, according to mathematical methods and with genetic programming. We used models in the particle swarm optimization, which gave us new values of technological parameters. The latter was then used in further numerical simulations of deep drawing process and the results were critically analyzed. |
Secondary keywords: |
sheet metal;deep drawing;computer simulation;artificial intelligence;genetic programming;particle swarm optimization; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Master's thesis/paper |
Thesis comment: |
Univ. v Mariboru, Fak. za strojništvo, Računalniško inženirsko modeliranje |
Pages: |
XV, 87 f. |
ID: |
10864349 |