diplomsko delo
Jera Stojko (Author), Boštjan Kuzman (Mentor)

Abstract

V teoriji grafov drevo pomeni kombinatoričen objekt, ki ga običajno definiramo kot povezan graf brez ciklov. V nalogi je predstavljen problem preštevanja različnih dreves s podanim številom vozlišč. Podani so štirje dokazi znamenitega Cayleyevega izreka za število označenih dreves: dokaz s Prüferjevo bijektivno konstrukcijo, dokaz s preštevanjem zakoreninjenih dreves na dva načina J. Pitmana, dokaz z rekurzivno formulo za število označenih gozdov in dokaz z uporabo Kirchhoffove zveze med determinantami matrik in vpetimi drevesi. V zadnjem delu je izpeljan novejši rezultat A. China in ostalih, o verjetnosti, da je naključno izbrano drevo v polnem grafu vpeto drevo. Posebej je obravnavano obnašanje limitne vrednosti verjetnosti, ko število vozlišč polnega grafa raste čez vse meje. Dobljeni rezultat je presenetljiv in lep.

Keywords

graf;polni graf;drevo;vpeto drevo;preštevanje;Cayleyev izrek;verjetnost;faktor;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL PEF - Faculty of Education
Publisher: [J. Stojko]
UDC: 519.17(043.2)
COBISS: 11727689 Link will open in a new window
Views: 810
Downloads: 185
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Counting trees
Secondary abstract: In graph theory, trees are combinatorial objects usually defined as connected graphs without cycles. In this thesis, the problem of counting different trees with a given number of vertices is presented. Four proofs of a celebrated theorem on the number of labeled trees by A. Cayley are given: by using a bijective construction due to H. Prüfer, by double counting of labeled rooted trees due to J. Pitman, by establishing a recursion on the number of labeled forests, and finally, by applying a relation between determinants and spanning trees due to H. Kirchhoff. In the final part, a recent result by A. Chin et al. is presented on the probability that a randomly picked tree in a complete graph is a spanning tree. In particular, the limit of this value as the number of vertices approaches infinity is observed. The result obtained is both surprising and beautiful.
Secondary keywords: mathematics;matematika;
File type: application/pdf
Type (COBISS): Bachelor thesis/paper
Thesis comment: Univ. v Ljubljani, Pedagoška fak., Dvopredmetni učitelj: Fizika-matematika
Pages: [43] str.
ID: 10865631
Recommended works:
, diplomsko delo
, magistrsko delo
, diplomsko delo
, delo diplomskega seminarja
, diplomsko delo