diplomsko delo
Abstract
V teoriji grafov drevo pomeni kombinatoričen objekt, ki ga običajno definiramo kot povezan graf brez ciklov. V nalogi je predstavljen problem preštevanja različnih dreves s podanim številom vozlišč. Podani so štirje dokazi znamenitega Cayleyevega izreka za število označenih dreves: dokaz s Prüferjevo bijektivno konstrukcijo, dokaz s preštevanjem zakoreninjenih dreves na dva načina J. Pitmana, dokaz z rekurzivno formulo za število označenih gozdov in dokaz z uporabo Kirchhoffove zveze med determinantami matrik in vpetimi drevesi. V zadnjem delu je izpeljan novejši rezultat A. China in ostalih, o verjetnosti, da je naključno izbrano drevo v polnem grafu vpeto drevo. Posebej je obravnavano obnašanje limitne vrednosti verjetnosti, ko število vozlišč polnega grafa raste čez vse meje. Dobljeni rezultat je presenetljiv in lep.
Keywords
graf;polni graf;drevo;vpeto drevo;preštevanje;Cayleyev izrek;verjetnost;faktor;
Data
Language: |
Slovenian |
Year of publishing: |
2017 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL PEF - Faculty of Education |
Publisher: |
[J. Stojko] |
UDC: |
519.17(043.2) |
COBISS: |
11727689
|
Views: |
810 |
Downloads: |
185 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Counting trees |
Secondary abstract: |
In graph theory, trees are combinatorial objects usually defined as connected graphs without cycles. In this thesis, the problem of counting different trees with a given number of vertices is presented. Four proofs of a celebrated theorem on the number of labeled trees by A. Cayley are given: by using a bijective construction due to H. Prüfer, by double counting of labeled rooted trees due to J. Pitman, by establishing a recursion on the number of labeled forests, and finally, by applying a relation between determinants and spanning trees due to H. Kirchhoff. In the final part, a recent result by A. Chin et al. is presented on the probability that a randomly picked tree in a complete graph is a spanning tree. In particular, the limit of this value as the number of vertices approaches infinity is observed. The result obtained is both surprising and beautiful. |
Secondary keywords: |
mathematics;matematika; |
File type: |
application/pdf |
Type (COBISS): |
Bachelor thesis/paper |
Thesis comment: |
Univ. v Ljubljani, Pedagoška fak., Dvopredmetni učitelj: Fizika-matematika |
Pages: |
[43] str. |
ID: |
10865631 |