Abstract
Let ▫$\Gamma$▫ denote a bipartite distance-regular graph with diameter ▫$D \geq 4$▫ and valency ▫$k \geq 3$▫. Let ▫$X$▫ denote the vertex set of ▫$\Gamma$▫, and let ▫$A$▫ denote the adjacency matrix of ▫$\Gamma$▫. For ▫$x \in X$▫ and for ▫$0 \leq i \leq D$▫, let ▫$\operatorname{\Gamma}_i(x)$▫ denote the set of vertices in ▫$X$▫ that are distance ▫$i$▫ from vertex ▫$x$▫. Define a parameter ▫$\operatorname{\Delta}_2$▫ in terms of the intersection numbers by ▫$\operatorname{\Delta}_2 = (k - 2)(c_3 - 1) -(c_2 - 1) p_{22}^2$▫. We first show that ▫$\operatorname{\Delta}_2 = 0$▫ implies that ▫$D \leq 5$▫ or ▫$c_2 \in \{1, 2 \}$▫. For ▫$x \in X$▫ let ▫$T = T(x)$▫ denote the subalgebra of ▫$\text{Mat}_X(\mathbb{C})$▫ generated by ▫$A, E_0^\ast, E_1^\ast, \ldots, E_D^\ast$▫, where for ▫$0 \leq i \leq D$, $E_i^\ast$▫ represents the projection onto the▫ $i$▫th subconstituent of ▫$\Gamma$▫ with respect to ▫$x$▫. We refer to ▫$T$▫ as the Terwilliger algebra of ▫$\Gamma$▫ with respect to ▫$x$▫. By the endpoint of an irreducible ▫$T$▫-module ▫$W$▫ we mean ▫$\min \{i | E_i^\ast W \ne 0 \}$▫. In this paper we assume ▫$\Gamma$▫ has the property that for ▫$2 \leq i \leq D - 1$▫, there exist complex scalars ▫$\alpha_i$▫, ▫$\beta_i$▫ such that for all ▫$x, y, z \in X$▫ with ▫$\partial(x, y) = 2$▫, ▫$\partial(x, z) = i$▫, ▫$\partial(y, z) = i$▫, we have ▫$\alpha_i + \beta_i | \operatorname{\Gamma}_1(x) \cap \operatorname{\Gamma}_1(y) \cap \operatorname{\Gamma}_{i - 1}(z) | = | \operatorname{\Gamma}_{i - 1}(x) \cap \operatorname{\Gamma}_{i - 1}(y) \cap \operatorname{\Gamma}_1(z) |$▫. We additionally assume that▫ $\operatorname{\Delta}_2 = 0$▫ with ▫$c_2 = 1$▫. Under the above assumptions we study the algebra ▫$T$▫. We show that if ▫$\Gamma$▫ is not almost 2-homogeneous, then up to isomorphism there exists exactly one irreducible ▫$T$▫-module with endpoint 2. We give an orthogonal basis for this ▫$T$▫-module, and we give the action of ▫$A$▫ on this basis.
Keywords
distance-regular graphs;terwilliger algebra;subconstituent algebra;
Data
Language: |
English |
Year of publishing: |
2016 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UP - University of Primorska |
UDC: |
519.17 |
COBISS: |
1538163396
|
ISSN: |
0024-3795 |
Views: |
2192 |
Downloads: |
143 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Unknown |
Type (COBISS): |
Not categorized |
Pages: |
str. 307-330 |
Volume: |
ǂVol. ǂ496 |
Issue: |
Vol. 496 |
Chronology: |
2016 |
DOI: |
10.1016/j.laa.2016.01.040 |
ID: |
10878091 |