Secondary abstract: |
Ozadje in namen: V članku raziskujemo problem prepoznavanja registrskih tablic (LPR), in podamo pregled številnih algoritmov, ki jih lahko uporabimo pri problemih analize slik. V sistemih za podporo vodenju, ki uporabljajo za prepoznavanje slikovnih objektov, je inteligenca vgrajena v statistične algoritme, ki jih je mogoče uporabiti v različnih korakih razpoznavanja. Opisujemo več rešitev, od začetnega koraka do lokalizacije in prepoznavanja slikovnih elementov. Cilj tega prispevka je predstaviti več verjetnostnih pristopov v korakih razpoznavanja, nato pa združiti te pristope v en sistem. Večina pristopov uporablja deterministične modele, ki so občutljivi na številne nenadzorovane vplive, kot so osvetlitev, razdalja vozila do kamere, šum pri procesiranju itd. Bistvo naših pristopov je v statističnih algoritmih, ki lahko natančno lokalizirajo in prepoznajo registrsko tablico.
Oblikovanje / metodologija / pristop: Predstavimo enostavne in poceni metode za reševanje relativno pomembnih problemov z uporabo verjetnostnih pristopov. Pri teh pristopih opisujemo številne statistične rešitve od stopnje začetnega praga do lokalizacije in prepoznavanja slikovnih elementov. V koraku lokalizacije uporabljamo frekvenčne signale iz slik registrskih tablic, ki jih analiziramo z uporabo diskretne Fourier-jeve transformacije. Pri prepoznavanju znakov na tablicah smo uporabili tudi verjetnostni model. Na koncu prikazujemo, kako združiti rezultate iz dvojezičnih tablic, kot so na primer tablice Saudove Arabije.
Rezultati: Algoritmi so učinkoviti pri razpoznavanju znakov na vozilih, v stavbah in drugod. Rezultat kaže prednost uporabe verjetnostnega pristopa v vseh korakih razpoznavanja registrskih tablic. Povprečne stopnje uspešnega razpoznavanja pri uporabi lokalnega nabora podatkov so dosegle 79,13%.
Zaključek: Izboljšanje stopnje razpoznavanja je mogoče doseči, če obstajata dva vira informacij, še posebej na registrskih tablicah, na katerih sta dve neodvisni besedili. |