Abstract

Wienerjev indeks povezanega grafa ▫$G$▫ je vsota razdalj med vsemi pari vozlišč grafa ▫$G$▫. Krepki produkt spada med štiri najbolj raziskovane grafovske produkte. V tem delu predstavimo splošno formulo za Wienerjev indeks krepkega produkta povezanih grafov. Če imata oba grafa konstantno ekscentričnost, se formula poenostavi. Posledica tega so zaprte formule za Wienerjev indeks krepkega produkta povezanega grafa ▫$G$▫ s ciklom, ki so tudi predstavljene.

Keywords

Wienerjev indeks;produkt grafov;krepki produkt;Wiener index;graph product;strong product;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FKKT - Faculty of Chemistry and Chemical Engineering
UDC: 519.17
COBISS: 18179417 Link will open in a new window
ISSN: 1232-9274
Views: 1012
Downloads: 362
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Wienerjev indeks krepkega produkta grafov
Secondary abstract: The Wiener index of a connected graph ▫$G$▫ is the sum of distances between all pairs of vertices of ▫$G$▫. The strong product is one of the four most investigated graph products. In this paper the general formula for the Wiener index of the strong product of connected graphs is given. The formula can be simplified if both factors are graphs with the constant eccentricity. Consequently, closed formulas for the Wiener index of the strong product of a connected graph ▫$G$▫ with a cycle are derived.
Secondary keywords: Wienerjev indeks;produkt grafov;krepki produkt;
URN: URN:SI:UM:
Type (COBISS): Scientific work
Pages: str. 81-94
Volume: ǂVol. ǂ38
Issue: ǂno. ǂ1
Chronology: 2018
DOI: 10.7494/OpMath.2018.38.1.81
ID: 10883866
Recommended works:
, no subtitle data available
, no subtitle data available
, no subtitle data available
, no subtitle data available