Abstract
In this research, machine learning algorithms were compared in a landslide-susceptibility assessment. Given the input set of GIS layers for the Starča Basin, which included geological, hydrogeological, morphometric, and environmental data, a classification task was performed to classify the grid cells to: (i) landslide and non-landslide cases, (ii) different landslide types (dormant and abandoned, stabilized and suspended, reactivated). After finding the optimal parameters, C4.5 decision trees and Support Vector Machines were compared using kappa statistics. The obtained results showed that classifiers were able to distinguish between the different landslide types better than between the landslide and non-landslide instances. In addition, the Support Vector Machines classifier performed slightly better than the C4.5 in all the experiments. Promising results were achieved when classifying the grid cells into different landslide types using 20% of all the available landslide data for the model creation, reaching kappa values of about 0.65 for both algorithms.
Keywords
landslides;support vector machines;decision trees classifier;Starča Basin;
Data
Language: |
English |
Year of publishing: |
2011 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UM FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture |
UDC: |
550.348.435(497.5) |
COBISS: |
262545920
|
ISSN: |
1854-0171 |
Parent publication: |
Acta geotechnica Slovenica
|
Views: |
647 |
Downloads: |
50 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
Bočna nosilnost kratkih togih pilotov v dvoslojnih nevezljivih tleh |
Secondary abstract: |
V tej raziskavi so avtorji primerjali algoritme strojnega učenja v okviru prognoze drsenja terena. Na osnovi GIS slojev področja kotline Starča, ki so vključevali geološke, hidrogeološke, morfometrijske in druge prostorske podatke, je napravljena klasifikacija mrežnih celic na (i) primerih »drsečega« in »stabilnega terena«, (ii) različnih tipih drsečega terena (»potencialen-neaktiven«, »stabiliziran-saniran« in »reaktiviran«). Po optimizaciji parametrov modela za C4.5 decision trees in Support Vector Machines so primerjali dobljene rezultate klasifikacije s pomočjo kappa statistike. Rezultati kažejo, da sta omenjena modela bolje razlikovala med različnimi tipi drsečega terena kot med drsečim in stabilnim terenom. Prav tako je bil klasifikator Support Vector Machines v vseh preizkusih nekoliko uspešnejši od C4.5. Spodbudne rezultate so dobili v eksperimentu, kjer so klasificirali različne tipe drsečega terena, uporabili pa so samo 20% od skupnega števila podatkov o drsečem terenu. V tem primeru so za oba klasifikatorja dobili vrednost kappa okoli 0.65. |
Secondary keywords: |
geofizika;plazovi;modeli;algoritmi;kotlina Strača;Hrvaška; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Scientific work |
Pages: |
str. 44-55 |
Volume: |
ǂVol. ǂ8 |
Issue: |
ǂ[no.] ǂ2 |
Chronology: |
2011 |
ID: |
10941017 |