Abstract
Galaxies, and clusters of galaxies, can act as gravitational lenses and magnify the light of
objects behind them. The effect enables observations of very distant supernovae, that
otherwise would be too faint to be detected by existing telescopes, and allows studies of
the frequency and properties of these rare phenomena when the universe was young.
Under the right circumstances, multiple images of the lensed supernovae can be
observed, and due to the variable nature of the objects, the difference between the arrival
times of the images can be measured. Since the images have taken different paths
through space before reaching us, the time-differences are sensitive to the expansion rate
of the universe. One class of supernovae, Type Ia, are of particular interest to detect. Their
well known brightness can be used to determine the magnification, which can be used to
understand the lensing systems. I will also report our discovery of the first resolved
multiply-imaged gravitationally lensed supernova Type Ia. I will also show the expectations
of search campaigns that can be conducted with future facilities, such as the James Webb
Space Telescope (JWST) or the Wide-Field Infrared Survey Telescope (WFIRST).
Keywords
strong lensing;Hubble constant;measuring expansion history;time delays;lensed supernovae;
Data
Language: |
English |
Year of publishing: |
2018 |
Typology: |
1.12 - Published Scientific Conference Contribution Abstract |
Organization: |
UNG - University of Nova Gorica |
UDC: |
52 |
COBISS: |
5174011
|
Views: |
2873 |
Downloads: |
136 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
URN: |
URN:SI:UNG |
Type (COBISS): |
Not categorized |
ID: |
10944181 |