diplomska naloga
Abstract
Z razvojem spleta je znanost analize omrežja dosegla zlato dobo, saj imamo na razpolago neomejeno število enostavno dostopnih podatkov. S popularnostjo in razvojem družbenih omrežij pa je prišla v ospredje tudi analiza družbenih omrežij. Cilj te diplomske naloge je ustvariti omrežje filmov in omrežje igralcev, katerih podatke bomo pridobili iz podatkovne baze spletne strani IMDb. To nam bo omogočila knjižnica IMDb.Py programskega jezika Python, v katerem bo potekala tudi nadaljnja analiza obeh omrežij. Nad omrežjema bomo pognali štiri najbolj popularne mere centralnosti, in sicer Degree, Closeness, Betweenness in Eigenvector. Te bomo med seboj primerjali in poskušali odkriti, ali med njimi obstaja kakšna povezava. Prav tako bomo preverili, ali obstaja kakšna povezava med omrežjema glede centralnosti. V omrežjih bomo poskušali odkriti skupnosti; to bomo storili z algoritmoma Louvain in CNM. Iz pridobljenih skupnosti bomo skušali ugotoviti razlike med njimi na podlagi podatkov, ki so nam na voljo.
Keywords
podatki;analiza družbenih omrežij;centranost;skupnosti;Python;Louvain;CNM;IMDb;
Data
Language: |
Slovenian |
Year of publishing: |
2016 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
FIŠ - Faculty of Information Studies |
Publisher: |
[S. Retelj] |
UDC: |
004.7:316.472.4(043.2) |
COBISS: |
2048407827
|
Views: |
164 |
Downloads: |
23 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary abstract: |
Network analysis has entered gold age with the developemnt of the internet, mostly beacuse of all the easy accesable data. The popularity of online networks has brought to the foree the analysis of social networks. The objective of our thesis is to build network of movies and network of actors, for which we will collect data from IMDb database. We will access the base through package IMDb.Py which is made for Python programming language. All further analysis of the networks will be made in Python. First of all we will run Degree, Closeness, Betweenness and Eigenvecto centrality over both networks. We will compare centralitys and try to find out if there exist any corelation between them. We will also compare centralitys between networks and try to find the connection there. As last we will try to find communities within networks, by running Louvain and CNM algorithms over them and find differences between communites with the data that is available to us. |
Secondary keywords: |
data;social network analysis;centrality;community;Python;Louvain;CNM;IMDb; |
Type (COBISS): |
Bachelor thesis/paper |
Thesis comment: |
Fakulteta za informacijske študije v Novem mestu |
Source comment: |
Na ov.: Diplomska naloga : visokošolskega strokovnega študijskega programa prve stopnje;
|
Pages: |
63 str. |
ID: |
10954632 |