delo diplomskega seminarja
Vida Maver (Author), Jaka Smrekar (Mentor)

Abstract

Normalni linearni mešani modeli so modeli oblike $Y = X\beta + Z\alpha + \epsilon$ in zajemajo tako fiksne učinke $\beta$, kot tudi slučajne učinke $\alpha$. Pomembni predpostavki v teh modelih sta predpostavka normalne porazdeljenosti vektorja slučajnih učinkov $\alpha \sim N(0, \sigma^2I_n)$ in vektorja slučajnih odstopanj $\epsilon \sim N(0, \tau^2I_m)$, ki nista nujno enakih razsežnosti ter predpostavka neodvisnosti slučajnih vektorjev $\alpha$ in $\epsilon$. Variančne komponente v modelih, obravnavanih v diplomskem delu, se lahko ocenjuje po običajni in restringirani metodi največjega verjetja, med drugim pa tudi z uporabo metode iterativnega uteženega povprečja najmanjših kvadratov, z metodo analize varianc in z metodo kvadratičnega nepristranskega ocenjevanja minimalnih norm. V normalnih linearnih mešanih modelih se da konstrurati več različnih tipov intervalov zaupanja, med drugim eksaktne intervale zaupanja za variančne komponente in intervale zaupanja za fiksne učinke.

Keywords

matematika;normalni linearni mešani modeli;fiksni učinki;slučajni učinki;ocenjevanje;metoda največjega verjetja;restringirana metoda največjega verjetja;testi po metodi razmerja verjetij;intervali zaupanja;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL FMF - Faculty of Mathematics and Physics
Publisher: [V. Maver]
UDC: 519.2
COBISS: 18419033 Link will open in a new window
Views: 1112
Downloads: 414
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Guassian linear mixed models
Secondary abstract: Gaussian linear mixed models can be expressed as $Y = X\beta + Z\alpha + \epsilon$, where vector $\beta$ represents fixed effects and vector $\alpha$ represents random effects. There are two important assumptions in these models. The first is the assumption that both, random effects $\alpha$ and errors $\epsilon$ are normally distributed, the former with mean zero and variance $\sigma^2$ and the latte with mean zero and variance $\tau^2$. The second important assumption is that random effects and errors are assumed to be independent. Variance components in Gaussian linear mixed models can be estimated with maximum likelihood method or with restricted maximum likelihood method. Variance components can also be estimated with iterative weighted least squares method, analysis of variance, or minimum norm quadratic unbiased estimation. Confidence intervals in Gaussian linear mixed models include exact confidence intervals for variance components and confidence intervals for fixed effects, among others.
Secondary keywords: mathematics;Gaussian linear mixed models;fixed effects;random effects;estimation;ANOVA;maximum likelihood method;restricted maximum likelihood method;likelihood-ratio tests;confidence intervals;
Type (COBISS): Final seminar paper
Study programme: 0
Thesis comment: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Finančna matematika - 1. stopnja
Pages: 36 str.
ID: 10956303
Recommended works:
, delo diplomskega seminarja
, delo diplomskega seminarja
, no subtitle data available
, delo diplomskega seminarja