magistrsko delo
Lea Zajc (Author), Drago Bokal (Mentor), Jože Pihler (Co-mentor)

Abstract

Magistrsko delo obravnava koncept digitalnega dvojčka in predstavi implementacijo digitalnega dvojčka sončne elektrarne s tehnologijo napovedovanja proizvodnje električne energije. Implementiranih je pet metod napovedovanja s poudarkom na metodi naključnih gozdov. Delo je razdeljeno v šest poglavij. Prvo poglavje definira koncept digitalnega dvojčka in opiše njegove glavne procese. Navedejo se namen in primeri uporabe. Drugo poglavje predstavi napovedovanje proizvodnje sončne elektrarne s fotonapetostnimi celicami. Opisan je proces pretvorbe sončne energije v električno. Našteti in opisani so vplivi na proizvodnjo sončne elektrarne, definirani sta atmosferska in električna formula za izračun električne energije v nekem času t. Opisane so metode za napovedovanje proizvodnje električne energije: posplošena linearna regresija, metoda podpornih vektorjev in avtoregresija. Definirana je formula za napoved proizvodnje električne energije z vključenimi lastnostmi sončne elektrarne in nekaterimi vremenskimi podatki, kar predstavlja fizikalni model. V tretjem poglavju je podrobneje predstavljeno delovanje naključnih gozdov in primeri uporabe, kjer se na začetku omeni odločitvena drevesa, s pomočjo katerih je izpeljana definicija naključnih gozdov. Četrto poglavje predstavi taksonomijo problemov in metod napovedovanja elektroenergetskih količin, v tabelo so dodane nove taksonomske enote, primerjave med tehnikami napovedovanja so uvrščene v izdelano taksonomijo, razširi se graf primerjav. Peto poglavje prikaže implementacijo digitalnega dvojčka sončne elektrarne FERI, predstavijo se vhodni parametri senzorjev, ostali vhodni podatki ter podatki, ki bi jih bilo smiselno pridobiti in vključiti. Opisana je integracija digitalnega dvojčka s sončno elektrarno. V analitiki digitalnega dvojčka je, s pomočjo zgledov, predstavljena uporaba metod napovedovanja. V zadnjem poglavju so definirani pogreški za primerjavo modelov, sledijo razlage rezultatov posameznih modelov polurne napovedi. Na koncu so modeli med sabo primerjani glede na novo definiran pogrešek E-MAPE, ki je konsistenten s standardno uporabljenim pogreškom M AE, razen pri primerjavi rezultatov avtoregresije in posplošene linearne regresije.

Keywords

digitalni dvojček;sončne elektrarne;napovedovanje;naključni gozd;podporni vektorji;posplošena linearna regresija;avtoregresija;fizikalni model;taksonomija;

Data

Language: Slovenian
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UM FNM - Faculty of Natural Sciences and Mathematics
Publisher: [L. Zajc]
UDC: 519.172.1:621.311.243(043.2)
COBISS: 24056840 Link will open in a new window
Views: 641
Downloads: 124
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Energy forecasting model of energy generation in a digital twin of a solar power plant
Secondary abstract: This master thesis examines the concept of a digital twin and demonstrates the implementation of a digital model of a solar power plant with the digital twin technology and intention of forecasting the production of electrical energy. Implemented are five methods of forecasting with the emphasis on the random forest method. The work is divided into six chapters. The first chapter defines the concept of a digital twin and explains its primary functions. The purpose and uses of digital twin are presented. The second chapter presents the forecasting of the production of the solar power plant. The processing of solar energy into electrical energy is described. The effects on the production of solar power plants are described, atmospheric and electrical formulas for calculating electrical energy are defined. The methods for forecasting and production of electrical energy are presented: generalized linear regression, support vector machine and autoregression. The formula for forecasting the production of electrical energy with the incorporated properties of the solar power plant and some weather data is defined, which follows the physical model. The third chapter presents in detail the methodology of random forests and states examples of use where, at the beginning, the decision trees are mentioned, with the help of which the definition of random forests is given. The fourth chapter presents the taxonomy of problems and methods of forecasting the electric energy, new taxonomic units are added to the taxonomic table, comparisons between forecasting techniques are included in the generated taxonomy, the graph of comparisons is expanded. Chapter five shows the implementation of the digital twin of the FERI solar power plant, the input parameters of the sensors and the other relevant input data are introduced. The integration of the digital twin with the solar power plant is described. With the use of examples the use of methods of forecasting in the digital twin analytics is defined. The last chapter defines errors for the comparison of models, followed by the interpretation of the results of individual models of half-yearly forecasts. Finally, the models are compared to each other according to the newly defined E-MAPE error that is consistent with the standard M AE error, except when comparing results of autoregression and generalized linear model.
Secondary keywords: master theses;digital twin;solar power plants;forecasting;random forest;support vector machine;generalized linear model;autoregression;physical model;taxonomy;
URN: URN:SI:UM:
Type (COBISS): Master's thesis/paper
Thesis comment: Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo
Pages: 85 f.
ID: 10957720