doctoral thesis
Žiga Zaplotnik (Author), Nedjeljka Žagar (Mentor)

Abstract

The increasing amount of remotely sensed data on atmospheric trace constituents has been provided by satellites in recent years as well as numerous vertical temperature and moisture profiles in form of radiances. This trend is going to continue with the launch of the Aeolus and EarthCARE satellites. In spite of significant improvements in atmospheric wind analyses expected from the Aeolus mission, especially in the tropics, there will remain a large gap between the number of available wind field and mass field observations. The initialization of wind field will remain strongly dependent on the quality of the background state and the modeling assumptions regarding the background-error covariances. The thesis addresses the potential of the four-dimensional variational data assimilation (4D-Var) to retrieve the unobserved wind field from the observations of atmospheric tracers and the mass field (temperature, moisture) through the 4D-Var internal model dynamics and the multivariate relationships in the background-error term. These mass-field data provide the information on advection. The presence of discontinuous and nonlinear moist dynamics as well as numerous non-mass conserving aerosol processes make the wind tracing very difficult and susceptible to errors. On the other hand, moisture observations were shown to influence wind in both tropics and midlatitudes. The problem of wind retrieval is studied using a novel intermediate-complexity 4D-Var data assimilation system which simulates nonlinear interactions between wind, temperature, moisture and aerosols. The description of moist processes includes a simple representation of condensation and the impact of released latent heat on dynamics. The prognostic equation for the total aerosol mixing ratio describes the dominant processes affecting the aerosol spatial distribution: advection and wet deposition by precipitation. The 4D-Var assimilation applies the incremental approach and uses a transformed relative humidity as control variable. In contrast to the model dynamical variables, which are analyzed in the multivariate fashion, moisture and aerosol data are assimilated univariately. The observing system simulation experiments are performed for the tropics, where the lack of wind information is most critical. Results show that the wind tracing from both aerosol and moisture data in unsaturated atmosphere largely depends on the spatial density and accuracy of the observations as well as the frequency of observation update and assimilation window length. The first two are needed to describe the spatial gradients of tracer and the last two provide information about the advection. In the case with linear flow, the spatial density of observations is more important than their update frequency while the opposite holds in nonlinear flow. There, the accuracy of wind tracing depends on the level of nonlinearity. In saturated atmosphere, combined assimilation of moisture and temperature data is shown to significantly improve wind analyses, as the intensity of the condensation process is susceptible to slightest changes in saturation humidity and thus temperature. The perfect-model 4D-Var with moisture observations can extract wind information even in the precipitating regions and strongly non-linear flow provided sufficient observations of humidity gradients. Wind tracing from aerosol data in saturated atmosphere is more complex, as the dominant aerosol process becomes deposition. As a result, small prior errors in thermodynamic fields (humidity, temperature) can amplify in a positive feedback loop, ruining the wind analysis. The results suggest that the assimilation of aerosols (and tracers in general) with feedback on winds is beneficial if the local rate of unmodeled or unknown aerosol sources and sinks (e.g. unmodeled wet deposition) is lower than the local magnitude of the wind advection rate, or else the analysis is ruined. Last, an ensemble of assimilation experiments provided a quantified estimation of the wind tracing potential for various modeling choices regarding the background-error covariance model, observation availability and accuracy, and assimilation settings.

Keywords

meteorology;numerical weather prediction;variational data assimilation;4D-var;wind tracing;tropical data assimilation;humidity;aerosols;

Data

Language: English
Year of publishing:
Typology: 2.08 - Doctoral Dissertation
Organization: UL FMF - Faculty of Mathematics and Physics
Publisher: [Ž. Zaplotnik]
UDC: 551.501
COBISS: 372649 Link will open in a new window
Views: 1008
Downloads: 479
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Sklopitev aerosolov, vlage in vetra v 4D-variacijski asimilaciji opazovanj pri numeričnem napovedovanju vremena
Secondary abstract: V zadnjih letih se je močno povečala količina daljinskih satelitskih opazovanj (meritev), tako atmosferskih aerosolov in redkih plinov, katerih vsebnosti se prostorsko in časovno spreminjajo, kot tudi iz meritev sevalnosti izluščenih navpičnih profilov vlage in temperature. Ta trend povečevanja daljinskih opazovanj se bo nadaljeval z izstrelitvijo satelitov Aeolus in EarthCARE. Pričakovano je, da bo Aeolus še posebej v tropih precej izboljšal točnost vetra v analizi, t.j. začetnem pogoju za meteorološko napoved. Vseeno pa bo skupno meritev vetra še vedno mnogo manj kot ostalih meritev, zato bo ta v začetnem pogoju še vedno precej odvisen od natančnosti prejšnje kratkoročne napovedi, ozadja, in načina predstavitve kovarianc napak ozadja. V tej študiji ocenjujejmo možnost luščenja polja vetra iz meritev koncentracije vlage in aerosolov ter opazovanj ostalih masnih spremenljivk (npr. temperature) s pomočjo štiridimenzionalne variacijske asimilacije opazovanj (4D-Var). V 4D-Var se namreč z integracijo enačb atmosferskega modela znotraj asimilacijskega okna informacija o opazovani količini prostorsko in časovno porazdeli ter vpliva tudi na ostale spremenljivke. Točneje, opazovanja mase vsebujejo tudi informacijo o advekciji z vetrom. Z dobrim poznavanjem količin, ki se z vetrom advektirajo, lahko torej vetru “sledimo” (ang. wind tracing). V praksi je zaradi nezvezne, nelinearne dinamike vlažnih procesov ter mnogih procesov aerosolov, ki ne ohranjajo skupne mase, luščenje vetra zahtevno in podvrženo napakam. Kljub temu so nekatere pretekle študije že pokazale, da v 4D-Var asimilaciji opazovanja vlage močno vplivajo na polje vetra tako v tropskih predelih kot v zmernih širinah. Problem luščenja vetra v 4D-Var študiramo s srednje zahtevnim prognostičnim modelom s predpisanim vertikalnim profilom, ki simulira nelinearne interakcije med vetrom, temperaturo, vlago in aerosoli. Model vključuje preprost fizikalni opis kondenzacije in vpliv pri tem sproščene latentne toplote na atmosfersko dinamiko, nasičena vlažnost pa je temperaturno odvisna. Prognostična enačba za skupno razmerje mešanosti aerosolov opisuje zgolj procesa, ki najbolj vplivata na spreminjanje prostorske porazdelitve aerosolov: advekcijo in izpiranje aerosolov s padavinami. 4D-Var asimilacija je formulirana v inkrementalnem načinu. Kontrolna spremenljivka za vlago je transformirana relativna vlažnost. Dinamične spremenljivke (horizontalni komponenti vetra in temperatura) so projicirane na ekvatorialne valove in asimilirane multivariatno, vlaga in aerosoli pa so asimilirani univariatno. Vsi eksperimenti v študiji so tipa OSSE (ang. observing system simulation experiment, t.j. eksperiment, kjer so opazovanja simulirana) in so pripravljeni v tropski domeni, kjer je negotovost vetra v analizi operativnih prognostičnih modelov največja. Rezultati študije kažejo, da je luščenje vetra v nenasičeni atmosferi tako iz opazovanj vlage kot aerosolov najbolj odvisno od prostorske gostote in natančnosti opazovanj ter časovne pogostosti opazovanj in dolžine asimilacijskega okna. Prvi dve opišeta gradiente v poljih snovi, drugi dve pa dajeta informacijo o advekciji. Če je atmosferski tok linearen, potem je prostorska gostota opazovanj bolj pomembna kot njihova pogostost, obratno pa velja v nelinearnem toku. Izkaže se, da je uspešnost luščenja vetra funkcija nelinearnosti asimilacijskega problema. V nasičeni atmosferi se analiza vetra, pridobljena z asimilacijo opazovanj vlage, močno izboljša, če asimiliramo še opazovanja temperature. Intenziteta kondenzacije je namreč odvisna od najmanjše spremembe nasičene vlažnosti, torej tudi od temperature. 4D-Var s perfektnim modelom atmosfere lahko v primeru, ko opazovanja zadosti dobro opišejo prostorske gradiente, izlušči informacijo o vetru tudi v območjih s padavinami in močno nelinearno dinamiko. Luščenje vetra iz opazovanj aerosolov v nasičeni atmosferi je precej zahtevnejše. V tem primeru je glavni proces, ki spreminja porazdelitev aerosolov, izpiranje. Majhna začetna napaka v termodinamičnih poljih (vlaga, temperatura) ozadja se v procesu asimilacije še poveča. Ta pozitivna povratna zanka povsem uniči analizo vetra. Rezultati kažejo tudi, da je asimilacija aerosolov z učinkom na polje vetra smiselna, če je magnituda neznanih izvirov/ponorov aerosolov manjša od magnitude advekcije. Nazadnje je potencial luščenja vetra ocenjen še kvantitativno z ansamblom eksperimentov in asimilacijskim modelom z modelsko napako, pri čemer variiramo model kovarianc napak, razpoložljivost in natančnost opazovanj ter druge asimilacijske nastavitve.
Secondary keywords: meteorologija;numerično napovedovanje vremena;variacijska asimilacija opazovanj;4D-var;luščenje vetra;tropska asimilacija;vlažnost zraka;aerosoli;Numerično napovedovanje vremena;
Type (COBISS): Doctoral dissertation
Study programme: 0
Embargo end date (OpenAIRE): 1970-01-01
Thesis comment: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za fiziko
Pages: 162 str.
ID: 10975806