Enej Ilievski (Author), Jacopo De Nardis (Author), Marko Medenjak (Author), Tomaž Prosen (Author)

Abstract

We identify a class of one-dimensional spin and fermionic lattice models which display diverging spin and charge diffusion constants, including several paradigmatic models of exactly solvable strongly correlated many-body dynamics such as the isotropic Heisenberg spin chains, the FermiHubbard model, and the t-J model at the integrable point. Using the hydrodynamic transport theory, we derive an analytic lower bound on the spin and charge diffusion constants by calculating the curvature of the corresponding Drude weights at half filling, and demonstrate that for certain lattice models with isotropic interactions some of the Noether charges exhibit super-diffusive transport at finite temperature and half filling.

Keywords

kvantna statistična mehanika;neravnovesna statistična mehanika;difuzija;quantum statistical mechanics;nonequilibrium statistical mechanics;diffusion;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 536.93
COBISS: 3275876 Link will open in a new window
ISSN: 0031-9007
Views: 786
Downloads: 516
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary keywords: kvantna statistična mehanika;neravnovesna statistična mehanika;difuzija;
Pages: str. 230602-1-230602-6
Volume: ǂVol. ǂ121
Issue: ǂiss. ǂ23
Chronology: 2018
DOI: 10.1103/PhysRevLett.121.230602
ID: 10993420