doktorsko delo
Ivan Sedmak (Author), Iztok Golobič (Mentor)

Abstract

Za boljše razumevanje procesov prenosa toplote in snovi na submikrometrskem nivoju je potrebno razviti napredne neinvazivne merilne tehnike. V doktorskem delu predstavljamo razvoj visokoločljivostne merilne tehnike na osnovi fluorescence dopiranega transparentnega stekla in steklokeramike za brezdotikalno detekcijo nestacionarnih temperaturnih polj s submikrometrsko krajevno ločljivostjo. Uporabljeni anorganski detekcijski materiali v primerjavi s tradicionalnimi organskimi materiali izkazujejo veliko odpornost proti degradaciji in bledenju fluorescence. Na transparentnih vzorcih steklokeramike Er:GPF1Yb0.5Er in fluoridnega stekla 6 % Er:ZBLALiP smo sočasno izvedli eksperimente prevoda toplote in mehurčkastega vrenja ter meritve temperaturno odvisnega fluorescenčnega signala. Nestacionarna temperaturna polja smo beležili na osnovi meritev spektralnih razlik izsevane fluorescenčne svetlobe. Z uporabo napredne fluorescenčne mikroskopije smo dosegli krajevno ločljivost v območju uklonske limite vzbujevalne svetlobe. Z optičnim rezinjenjem smo izvedli rekonstrukcijo temperaturne porazdelitve vzdolž celotne globine fluorescenčnega vzorca. S povečano frekvenco zajema fluorescenčni slik smo detektirali rast posameznega mehurčka pri nasičenem mehurčkastem vrenju vode, kar predstavlja izboljšanje na ravni dveh velikostnih razredov v primerjavi s poskusi, opravljenimi z uporabo infrardeče termografije. Ugotavljamo, da bi razvoj predlagane merilne tehnike pripomogel k izboljšanem razumevanje procesov in gonilnih mehanizmov prenosa toplote pri vrenju. Predlagana merilna tehnika nudi tudi možnost vpogleda v številne fizikalne, biološke in elektrokemične procese, na mejni trdno-kapljevinasti plasti s submikrometrsko krajevno ločljivostjo.

Keywords

disertacije;temperaturno odvisna fluorescenca;temperaturno polje;nestacionarni prenos toplote;fluorescenčna termometrija;mehurčkasto vrenje;submikrometrska krajevna ločljivost;

Data

Language: Slovenian
Year of publishing:
Typology: 2.08 - Doctoral Dissertation
Organization: UL FS - Faculty of Mechanical Engineering
Publisher: [I. Sedmak]
UDC: 536.7:535.371(043.2)
COBISS: 16544027 Link will open in a new window
Views: 789
Downloads: 347
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Submicron detection of temperature fields in transient heat transfer
Secondary abstract: A comprehensive understanding of the transient heat- and mass-transfer processes on the submicron scale requires the development of novel, non-invasive, temperature-measurement techniques. This work presents the development of a high-resolution fluorescence imaging technique for a non-invasive characterization of the transient temperature fields on the submicron scale using a temperature-sensitive co-doped transparent fluoride glass and co-doped glass-ceramic. These inorganic materials are more stable in the scope of degradation and photobleaching compared to the usually used organic dyes. The heat-conduction and boiling experiments were performed on an Er:GPF1Yb0.5Er glass-ceramic and an 6 % Er:ZBLALiP fluoride glass, which were also simultaneously used as a temperature sensor. Transient temperature measurements were made by analyzing the spectral variations of the fluorescence emission. Imaging of the transient temperature fields was performed by utilizing high-resolution, fluorescence microscopy, which enabled diffraction-limited spatial resolution at submicron scale. Furthermore, optical sectioning has been applied for the reconstruction of the wall-temperature distributions. The high-speed visualization at several hundred frames per second ensured sampling of individual bubble-nucleation event during saturated boiling of water. The proposed technique enables reliable transient temperature measurements at a spatial resolution that is almost two orders of magnitude better compared to the results published in studies with infrared thermography. Consequently, the development of this technique could provide new insights for a better understanding of the nucleate boiling process and the nature of the prevailing surface heat transfer mechanisms. This technique could also have applications in the numerous physical, biological and electrochemical processes, which are closely dependent on the solid-liquid interfaces, as it allows the visualization of temperature variations on the submicron scale.
Secondary keywords: dissertations;temperature-dependent fluorescence;temperature field;transient heat transfer;fluorescence thermometry;nucleate boiling;submicron spatial resolution;
Type (COBISS): Doctoral dissertation
Study programme: 0
Thesis comment: Univ. v Ljubljani, Fak. za strojništvo
Pages: XXVIII, 115 str.
ID: 11087280