zaključna naloga Razvojno raziskovalnega programa I. stopnje Strojništvo
Abstract
Za optimiziranje procesov, ki so v današnji industriji čedalje kompleksnejši in vedno bolj avtomatizirani, se ne moremo več zanašati na preproste izračune in izkušnje. Zato vedno pogosteje uporabljamo diskretne simulacije, ki predstavljajo digitalni dvojček realnega sistema. S pomočjo simulacije lahko preizkušamo različne scenarije, tudi povsem hipotetične, ne da bi motili realni sistem. Problem delavniške proizvodnje (angl. JSSP) predstavlja elementarno težavo planiranja zaporedja proizvodnje različnih naročil. Cilj optimizacije je bil najti zaporedje naročil, v katerem bodo vsi proizvodi končani v cim krajšem času. Naš 10-dimenzionalni problem smo optimizirali naključno in z genetskim algoritmom. Z obema metodama smo pridobili enak najboljši rezultat (2 d 8 h 44 min), kvalitativno pa smo lahko vrednotili le konvergiranega, ki ga je pridobil genetski algoritem. Ta se je izkazal kot dobro orodje simulacijske optimizacije, saj v kratkem času preveri veliko število permutacij, s pomočjo mutacij in križanja pa relativno hitro in z zadostno stopnjo gotovosti najde aproksimacijo optimalne vrednosti. Prav zaradi enostavnosti, hitrosti in relativne natančnosti ostaja med vodilnimi algoritmi optimizacije aplikativnih simulacij.
Keywords
diplomske naloge;optimizacija;digitalni dvojčki;simulacije;delavniška proizvodnja;genetski algoritmi;
Data
Language: |
Slovenian |
Year of publishing: |
2019 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FS - Faculty of Mechanical Engineering |
Publisher: |
[j. Grgurič] |
UDC: |
004.896:658.5(043.2) |
COBISS: |
16607515
|
Views: |
816 |
Downloads: |
319 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Optimisation of assembling and feeding system of job shop production using a digital twin |
Secondary abstract: |
Todays industrys increasingly complex and automated processes cannot be optimised efficiently only using simple equations and experiences. Therefore the use of discrete simulations is on the rise, presenting real systems with digital twins. Using a simulation we can test different scenarios, even hypothetical ones, without disturbing the real system. Job shop scheduling problem represents a basic production planning problem of different sets of products. The goal of optimisation was finding the sequence of orders that equates in the shortest possible production time. Our 10 dimensional problem was optimised using pseudo-random generated sequences and using genetic algorithm. Both methods produced same optimisation result (2d 8h 44min), but we were only able to qualitatively assess the converging result, that of genetic algorithm. The algorithm has proved itself to be very useful solving simulation optimisation problems, with its fast calculations including mutations and cross-overs. It produces approximate results of the optimal solution, which is usually sufficient for real life applications. Its simplicity, speed and relative accuracy place it amongst the most used simulation optimisation algorithms. |
Secondary keywords: |
optimisation;digital twins;simulations;job shop production;Tecnomatix Plant Simulation;genetic algorithms; |
Type (COBISS): |
Final paper |
Study programme: |
0 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za strojništvo |
Pages: |
XIII, 27 f., [8] f. pril. |
ID: |
11123936 |