Scott Armstrong (Author), Tuomo Kuusi (Author), Jean-Christophe Mourrat (Author)

Abstract

V delu raziskujemo absolutno zvezni del spektra posplošenih strun. Pokažemo, da se absolutno zvezni spekter nekaterih modelnih primerov posplošenih strun ohrani pod ustreznimi perturbacijami. V prvem delu razvijemo teorijo in orodja, potrebna za definicijo in izračun spektra. V drugem delu predstavimo rezultate in jih dokažemo.

Keywords

matematika;verjetnost;parcialne diferencialne enačbe;homogenizacija;mathematics;probability;partial differential equations;homogenization;

Data

Language: English
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UL FMF - Faculty of Mathematics and Physics
Publisher: Springer
UDC: 517.9
COBISS: 18664537 Link will open in a new window
ISBN: 978-3-030-15544-5
Views: 1222
Downloads: 225
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: On the absolutely continuous spectrum of generalized indefinite strings
Secondary abstract: We investigate the absolutely continuous spectrum of generalized indefinite strings. We show that the absolutely continuous spectrum of two model examples of generalized indefinite strings is preserved under rather wide perturbations. In the first part of the thesis we present the theory and tools needed for the definition and computation of the spectrum. In the second part we present the results and their proofs.
Secondary keywords: Absolutely continuous spectrum;generalized indefinite strings;
Type (COBISS): Master's thesis/paper
Study programme: 0
Embargo end date (OpenAIRE): 1970-01-01
Pages: XXXVIII, 518 str.
ID: 11163543
Recommended works:
, magistrsko delo
, PhD thesis