Abstract
We study the existence and multiplicity of solutions for a class of fractional Schrödinger-Kirchhoff type equations with the Trudinger-Moser nonlinearity. More precisely, we consider ▫$$\begin{cases} M(\|u\|^{N/s}) \Big[ (-\Delta)_{N/s}^s u + V(x)|u|^{\frac{N}{s}-1}u \Big]= f(x,u) + \lambda h(x)|u|^{p-2}u & \text{in} \quad \mathbb{R}^N \; , \\ \|u\| = \Big( \iint_{\mathbb{R}^{2N}} \frac{|u(x)-u(y)|^{N/s}}{|x-y|^{2N}}dxdy + \int_{\mathbb{R}^N} V(x) |u|^{N/s}dx \Big)^{s/N} \; , \end{cases}$$▫ where ▫$M \colon [0, \infty] \to [0, \infty)$▫ is a continuous function, ▫$s \to (0,1)$▫, ▫$N \ge 2$▫, ▫$\lambda > 0$▫ is a parameter, ▫$1 < p < \infty$▫, ▫$(-\Delta)_{N/s}^s$▫ is the fractional ▫$N/s$▫-Laplacian, ▫$V \colon \mathbb{R} \to (0, \infty)$▫ is a continuous function, ▫$f \colon \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$▫ is a continuous function, and ▫$h \colon \mathbb{R} \to [0, \infty)$▫ is a measurable function. First, using the mountain pass theorem, a nonnegative solution is obtained when ▫$f$▫ satisfies exponential growth conditions and ▫$\lambda$▫ is large enough, and we prove that the solution converges to zero in ▫$W_V^{s, N/s} (\mathbb{R}^N)$▫ as ▫$\lambda \to \infty$▫. Then, using the Ekeland variational principle, a nonnegative nontrivial solution is obtained when ▫$\lambda$▫ is small enough, and we show that the solution converges to zero in ▫$W_V^{s, N/s} (\mathbb{R}^N)$▫ as ▫$\lambda \to 0$▫. Furthermore, using the genus theory, infinitely many solutions are obtained when ▫$M$▫ is a special function and ▫$\lambda$▫ is small enough. We note that our paper covers a novel feature of Kirchhoff problems, that is, the Kirchhoff function ▫$M(0) = 0$▫.
Keywords
fractional Schrödinger-Kirchhoff equations;Trudinger-Moser inequality;existence of solutions;
Data
Language: |
English |
Year of publishing: |
2019 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
UDC: |
517.95 |
COBISS: |
18500185
|
ISSN: |
0362-546X |
Views: |
655 |
Downloads: |
429 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Type (COBISS): |
Article |
Pages: |
str. 74-98 |
Issue: |
ǂVol. ǂ186 |
Chronology: |
Sep. 2019 |
DOI: |
10.1016/j.na.2018.11.008 |
ID: |
11193525 |