Abstract

We consider a nonlinear Robin problems driven by the ▫$p$▫-Laplacian plus an indefinite potential. The reaction is resonant with respect to a variational eigenvalue. For the principal eigenvalue we assume strong resonance. Using variational tools and critical gropus we prove existence and multiplicity theorems.

Keywords

p-Laplacian;indefinite potential;resonance;strong resonance;variational eigenvalue;nonlinear regularity;critical groups;Robin boundary condition;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 517.956.2
COBISS: 18238809 Link will open in a new window
ISSN: 1239-629X
Views: 474
Downloads: 274
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Type (COBISS): Article
Pages: str. 483-508
Volume: ǂVol. ǂ43
Issue: ǂfasc. ǂ1
Chronology: 2018
DOI: 10.5186/aasfm.2018.4331
ID: 11206806