diplomsko delo
David Nabergoj (Author), Matjaž Kukar (Mentor)

Abstract

V diplomski nalogi obravnavamo problem avtomatskega merjenja dolžin smučarskih skokov na podlagi videoposnetkov. Postopek razdelimo na dva podproblema: napovedovanje trenutka doskoka in določanje dolžine skoka. Prvega rešujemo s konvolucijsko nevronsko mrežo, ki za dano sličico videoposnetka skoka napove, ali je skakalec v zraku ali na tleh. Dolžino skoka določimo z uporabo klasičnih metod računalniškega vida, s katerimi najprej poiščemo točko stopal na sliki, nato pa z upoštevanjem oddaljenosti točke od merilnih črt pridobimo natančno dolžino. Konvolucijska nevronska mreža doseže klasifikacijsko točnost 93 %, celoten postopek določanja dolžine skoka pa srednjo absolutno napako 0.785 metra na relevantnem območju doskočišča. Napovedan trenutek doskoka se od resničnega razlikuje za približno eno sličico. Rezultati diplomske naloge pomenijo prispevek k razvoju sodobnih sistemov za avtomatsko meritev dolžin smučarskih skokov v realnem času.

Keywords

smučarski skoki;video meritve;meritve dolžin;globoko učenje;računalniški vid;računalništvo in informatika;univerzitetni študij;diplomske naloge;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL FRI - Faculty of Computer and Information Science
Publisher: [D. Nabergoj]
UDC: 004.8:796.925(043.2)
COBISS: 1538309315 Link will open in a new window
Views: 873
Downloads: 394
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Automatic ski-jump distance measurement with deep neural networks
Secondary abstract: We consider the problem of automatic video-based ski-jump distance measurement. The procedure is split into two subproblems: predicting the landing and determining the distance of the jump. To predict the landing, we use a convolutional neural network which takes an image of the ski-jump video as input and predicts whether the ski-jumper is in the air or on the ground. To determine the distance of the jump, we use classical computer vision methods which first find the location of the jumper's feet in the image and then use measurement lines to output the precise distance. The convolutional neural network achieves a classification accuracy of 93%. The complete procedure achieves a mean absolute error of 0.785 meters in the relevant landing area. The predicted landing and the actual landing differ by approximately one frame. The results of the thesis contribute to the development of modern real-time ski-jump distance measurement systems.
Secondary keywords: ski-jumping;video measurement;distance measurement;deep learning;computer vision;computer and information science;diploma;
Type (COBISS): Bachelor thesis/paper
Study programme: 1000468
Embargo end date (OpenAIRE): 1970-01-01
Thesis comment: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Pages: 58 str.
ID: 11211148