diplomsko delo
Abstract
Ocenjevanje problemov v balvanskem plezanju je zelo pomemben del tega športa, prav tako pa je to tudi zelo zahtevna naloga, uspeh katere je odvisen predvsem od ocenjevalčevih izkušenj in doslednosti pri ocenjevanju. Diplomska naloga primerja različne predstavitve lastnosti balvanskih problemov ter uspešnost metod strojnega učenja pri ocenjevanju na podlagi izpeljanih atributov v upanju, da so modeli, kot so model naključnih gozdov, linearne regresije in najbližjih sosedov, dovolj natančni, da bi lahko podali smiselno oceno za neocenjen balvanski problem.
V nalogi rezultate razdelimo na več faz, kjer v vsaki fazi dodamo prej neuporabljene ali na novo izpeljane atribute ter primerjamo, kakšno uspešnost dosežejo modeli z novim naborom atributov. Na koncu atribute posplošimo, saj tako dobimo rezultate za nabor atributov, ki ga lahko prenesemo na katero koli plezalno steno, s čimer dobi diplomska naloga uporabno vrednost. Rezultat dela so izdelani modeli strojnega učenja, ki se pri napovedovanju ocene neocenjenega balvanskega problema za poljubno plezalno steno zmotijo za 1,69 ocene.
Keywords
strojno učenje;ocenjevanje balvanskih problemov;balvansko plezanje;atributi;računalništvo;računalništvo in informatika;visokošolski strokovni študij;diplomske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2019 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FRI - Faculty of Computer and Information Science |
Publisher: |
[J. Repe] |
UDC: |
004.85:796.526(043.2) |
COBISS: |
1538355651
|
Views: |
413 |
Downloads: |
131 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Predicting problem difficulty in bouldering |
Secondary abstract: |
Grading bouldering problems is a very important part of bouldering. It’s also a very demanding task, the success of which is determined by the grader’s experience and consistency when grading. This thesis compares different approaches to encode bouldering problem properties and the accuracy of machine learning models, such as random forest, linear regression and k nearest neighbours, when grading bouldering problems, in hope that the machine learning models prove to be sufficiently accurate to appropriately grade an ungraded bouldering problem.
Results are presented in different phases. A new set of unused or newly created features is added in each subsequent phase and the accuracy of learning is compared across different models for the selected subset of features. Finally a subset of generic features is used, such that it can be transferred to any climbing wall, which adds additional value to the work done in the thesis. The end result is a set of machine learning models, which, when grading an ungraded bouldering problem for an arbitrary climbing wall, miss the correct prediction for 1.69th of the grade. |
Secondary keywords: |
machine learning;grading bouldering problems;bouldering;features;computer science;computer and information science;diploma; |
Type (COBISS): |
Bachelor thesis/paper |
Study programme: |
1000470 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za računalništvo in informatiko |
Pages: |
61 str. |
ID: |
11222069 |