Dušan Repovš (Author), Mikhail Zaicev (Author)

Abstract

We introduce grading on certain finite dimensional simple Lie superalgebras of type ▫$P(t)$▫ by elementary abelian 2-group. This grading gives rise to Pauli matrices and is a far generalization of ▫$(\mathbb{Z}_2 \times \mathbb{Z}_2)$▫-grading on Lie algebra of ▫$(2 \times 2)$▫-traceless matrices.We use this grading for studying numerical invariants of polynomial identities of Lie superalgebras. In particular, we compute graded PI-exponent corresponding to Pauli grading.

Keywords

polynomial identities;Lie superalgebras;graded algebras;codimensions;exponential growth;Pauli gradings;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 512.554
COBISS: 17887321 Link will open in a new window
ISSN: 0024-3795
Views: 567
Downloads: 274
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Type (COBISS): Article
Pages: str. 134-150
Issue: ǂVol. ǂ520
Chronology: 2017
DOI: http://dx.doi.org/10.1016/j.laa.2017.01.023
ID: 11222886
Recommended works:
, no subtitle data available
, no subtitle data available
, no subtitle data available
, no subtitle data available