delo diplomskega seminarja
Matija Šteblaj (Author), Matej Brešar (Mentor)

Abstract

Kolobarji z enolično faktorizacijo so celi kolobarji, v katerih lahko neničelne neobrnljive elemente zapišemo kot končni produkt nerazcepnih elementov in je ta zapis enoličen do asociiranosti in vrstnega reda natančno. Veljajo naslednje vsebovanosti: polja $\subset$ evklidski kolobarji $\subset$ glavni kolobarji $\subset$ kolobarji z enolično faktorizacijo $\subset$ celi kolobarji, kjer so vse vsebovanosti stroge. Polja, evklidski kolobarji in glavni kolobarji so torej primeri kolobarjev z enolično faktorizacijo. Kolobar polinomov $K[x]$ je kolobar z enolično faktorizacijo natanko tedaj, ko je $K$ kolobar z enolično faktorizacijo.

Keywords

matematika;kolobarji;faktorizacija;polja;evklidski kolobarji;glavni kolobarji;kolobarji z enolično faktorizacijo;kolobarji polinomov;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL FMF - Faculty of Mathematics and Physics
Publisher: [M. Šteblaj]
UDC: 512
COBISS: 18725209 Link will open in a new window
Views: 1282
Downloads: 209
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Unique Factorization Domains
Secondary abstract: Unique Factorization Domains are integral domains in which nonzero elements that are not units can be written as a finite product of irreducible elements and this decomposition is unique up to associates and the order of factors. We have the following inclusions: fields $\subset$ Euclidean Domains $\subset$ Principal Ideal Domains $\subset$ Unique Factorization Domains $\subset$ integral domains with all containments being proper. Thus: fields, Euclidean Domains and Principal Ideal Domains are examples of Unique Factorization Domains. The polynomial ring $K[x]$ is a Unique Factorization Domain if and only if $K$ is a Unique Factorization Domain.
Secondary keywords: mathematics;rings;factorization;fields;Euclidean domains;principal ideal domains;unique factorization domains;polynomial rings;
Type (COBISS): Final seminar paper
Study programme: 0
Embargo end date (OpenAIRE): 1970-01-01
Thesis comment: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja
Pages: 29 str.
ID: 11223576
Recommended works:
, delo diplomskega seminarja
, magistrsko delo
, delo diplomskega seminarja