delo diplomskega seminarja
Abstract
V delu bom predstavil algoritem za računanje realnih ničel polinoma, imenovan kubično izrezovanje. Dan polinom $p$ najprej zapišemo v Bernsteinovi bazi in ga aproksimiramo s kubičnim polinomom $q$. Slednjega dobimo z nižanjem stopnje začetnega polinoma. Po Cardanovi formuli izračunamo ničle polinoma $q$, ki bodo oklepale ničle polinoma $p$ in bodo zmanjšale začetni interval. Iteracijo ponavljamo, dokler interval ni krajši od željene natančnosti. Dolžine intervalov z ničlami $p$ konvergirajo z redom 4 za enojne ničle, 2 za dvojne ničle in superlinearno 4/3 za ničle reda 3.
Keywords
matematika;polinomi;iskanje ničel;kubično izrezovanje;Bézierjeve krivulje;
Data
Language: |
Slovenian |
Year of publishing: |
2019 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FGG - Faculty of Civil and Geodetic Engineering |
Publisher: |
[P. Jereb] |
UDC: |
519.6 |
COBISS: |
18724185
|
Views: |
1228 |
Downloads: |
189 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Computing real roots of polynomial using cubic clipping |
Secondary abstract: |
In this work we present an algorithm for computing real zeros of a polynomial called cubic clipping. We write a given polynomial $p$ in Bernstein basis. Then we aproximate $p$ with a cubic polynomial $q$ using degree reduction on $p$. Using Cardano formula, we then compute the roots of $q$ which enclose zeros of $p$ and shorthen the length of the starting interval. Now we iterate this process, until we find zeros within the given accuracy. Lengths of the intervals containing zeros of $p$ have a convergence rate 4 for single roots, 2 for double roots and superlinear 4/3 for cubic roots. |
Secondary keywords: |
mathematics;polynomials;root finding;cubic clipping;Bézier curves; |
Type (COBISS): |
Final seminar paper |
Study programme: |
0 |
Thesis comment: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja |
Pages: |
33 str. |
ID: |
11227541 |