delo diplomskega seminarja
Peter Jereb (Author), Gašper Jaklič (Mentor)

Abstract

V delu bom predstavil algoritem za računanje realnih ničel polinoma, imenovan kubično izrezovanje. Dan polinom $p$ najprej zapišemo v Bernsteinovi bazi in ga aproksimiramo s kubičnim polinomom $q$. Slednjega dobimo z nižanjem stopnje začetnega polinoma. Po Cardanovi formuli izračunamo ničle polinoma $q$, ki bodo oklepale ničle polinoma $p$ in bodo zmanjšale začetni interval. Iteracijo ponavljamo, dokler interval ni krajši od željene natančnosti. Dolžine intervalov z ničlami $p$ konvergirajo z redom 4 za enojne ničle, 2 za dvojne ničle in superlinearno 4/3 za ničle reda 3.

Keywords

matematika;polinomi;iskanje ničel;kubično izrezovanje;Bézierjeve krivulje;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL FGG - Faculty of Civil and Geodetic Engineering
Publisher: [P. Jereb]
UDC: 519.6
COBISS: 18724185 Link will open in a new window
Views: 1228
Downloads: 189
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Computing real roots of polynomial using cubic clipping
Secondary abstract: In this work we present an algorithm for computing real zeros of a polynomial called cubic clipping. We write a given polynomial $p$ in Bernstein basis. Then we aproximate $p$ with a cubic polynomial $q$ using degree reduction on $p$. Using Cardano formula, we then compute the roots of $q$ which enclose zeros of $p$ and shorthen the length of the starting interval. Now we iterate this process, until we find zeros within the given accuracy. Lengths of the intervals containing zeros of $p$ have a convergence rate 4 for single roots, 2 for double roots and superlinear 4/3 for cubic roots.
Secondary keywords: mathematics;polynomials;root finding;cubic clipping;Bézier curves;
Type (COBISS): Final seminar paper
Study programme: 0
Thesis comment: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja
Pages: 33 str.
ID: 11227541
Recommended works:
, delo diplomskega seminarja
, delo diplomskega seminarja