delo diplomskega seminarja

Abstract

V delu predstavimo kopule in njihovo uporabo v modelih udarov. Ime kopula izvira iz latinske besede za 'vez' ali 'povezavo', kar v grobem tudi opiše njihov namen. Kopule definiramo in prek Sklarovega izreka vpeljemo v svet verjetnosti in porazdelitvenih funkcij. Za lažjo predstavo se srečamo z bolj znanimi kopulami in jih vizualno predstavimo v obliki prostorskih grafov, nivojnic in razsevnih diagramov. Vpeljemo jih v modele udarov in na primerih prikažemo njihovo uporabno vrednost. Z modeli udarov predstavimo prihod udara v nek sistem. Glede na vrsto in porazdelitev časov udarov ter število in vrsto komponent razlikujemo različne modele. V tem delu se bomo srečali z dvokomponentnimi sistemi in glede na učinek in porazdelitev časov udarov ločili tri primere. Za različne modele udarov definiramo kopule in z njihovo pomočjo povežemo porazdelitvene funkcije življenjskih dob v porazdelitveno funkcijo življenjske dobe sistema.

Keywords

finančna matematika;kopule;modeli udarov;Marshallova kopula;maksmin kopula;Marshall-Olkinova kopula;analiza preživetja;nivojnice;razsevni diagrami;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL EF - Faculty of Economics
Publisher: [M. Gubanec Hančič]
UDC: 519.2
COBISS: 18821721 Link will open in a new window
Views: 1206
Downloads: 252
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Copulas in shock models
Secondary abstract: We introduce copulas and their usage in shock models. The name copula derives from the latin word for 'link' or 'tie', which roughly describes their purpose. We define copulas and introduce them to the world of probability and distribution functions via the Sklar theorem. To get a clearer picture of what copulas are, we get to know some of the more famous copulas and see their visual representations in the form of spatial graphs, contour plots and scatterplots. We introduce copulas to shock models and show their usability via examples. Via shock models we introduce arrivals of shocks into systems. Based on the type and distribution of shock arrival times and number and types of components we distinguish different models. In this thesis we will get acquintanced with two-component systems, and based on effects and the distribution of shock arrival times we will define three different models. We define copulas for different shock models and through their application bind multiple univariate distribution functions into one distribution function of the system.
Secondary keywords: copulas;shock models;Marshall copula;maxmin copula;Marshall-Olkin copula;survival analysis;contour plots;scatterplots;
Type (COBISS): Final seminar paper
Study programme: 0
Embargo end date (OpenAIRE): 1970-01-01
Thesis comment: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Finančna matematika - 1. stopnja
Pages: 33 str.
ID: 11228337
Recommended works:
, delo diplomskega seminarja
, doktorska disertacija
, delo diplomskega seminarja
, delo diplomskega seminarja
, delo diplomskega seminarja