Abstract

Some existence results for a parametric Dirichlet problem defined on the Sierpiński fractal are proved. More precisely, a critical point result for differentiable functionals is exploited in order to prove the existence of a well-determined open interval of positive eigenvalues for which the problem admits at least one non-trivial weak solution.

Keywords

Sierpiński gasket;nonlinear elliptic equation;Dirichlet form,;weak Laplacian;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 517.95
COBISS: 17460313 Link will open in a new window
ISSN: 2191-9496
Views: 557
Downloads: 354
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Type (COBISS): Article
Pages: str. 75-84
Volume: ǂVol. ǂ5
Issue: ǂiss. ǂ1
Chronology: 2016
DOI: 10.1515/anona-2015-0105
ID: 11231239