Abstract
We study the transition between integrable and chaotic behavior in dissipative open quantum systems, exemplified by a boundary driven quantum spin chain. The repulsion between the complex eigenvalues of the corresponding Liouville operator in radial distance $s$ is used as a universal measure. The corresponding level spacing distribution is well fitted by that of a static two-dimensional Coulomb gas with harmonic potential at inverse temperature $\beta \in [0,2]$. Here, $\beta=0$ yields the two-dimensional Poisson distribution, matching the integrable limit of the system, and $\beta=2$ equals the distribution obtained from the complex Ginibre ensemble, describing the fully chaotic limit. Our findings generalize the results of Grobe, Haake, and Sommers, who derived a universal cubic level repulsion for small spacings $s$. We collect mathematical evidence for the universality of the full level spacing distribution in the fully chaotic limit at $\beta=2$. It holds for all three Ginibre ensembles of random matrices with independent real, complex, or quaternion matrix elements.
Keywords
kvantna mehanika;kvantni kaos;odprti kvantni sistemi;nelinearna dinamika;statistična fizika;quantum mechanics;quantum chaos;open quantum systems;nonlinear dynamics;statistical physics;
Data
Language: |
English |
Year of publishing: |
2019 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
UDC: |
530.182 |
COBISS: |
3395940
|
ISSN: |
0031-9007 |
Views: |
588 |
Downloads: |
466 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary keywords: |
kvantna mehanika;kvantni kaos;odprti kvantni sistemi;nelinearna dinamika;statistična fizika; |
Pages: |
str. 254101-1-254101-6 |
Volume: |
ǂVol. ǂ123 |
Issue: |
ǂiss. ǂ25 |
Chronology: |
2019 |
DOI: |
10.1103/PhysRevLett.123.254101 |
ID: |
11344507 |