Abstract

In externally seeded free-electron lasers (FELs) that rely on a frequency upconversion scheme to generate intense short-wavelength light pulses, the slippage effect in the radiator imposes a lower limit on the FEL pulse duration, which is typically on the order of a few tens of femtoseconds. Recently it was proposed that a combination of a chirped microbunch and a tapered undulator can be used to break this limit. Although the method has the potential to reduce the FEL pulse duration down to a level that cannot be achieved by current state-of-the-art technology, it requires a very short seed pulse (∼ one optical cycle or less), making it challenging to put this concept into practical use. Here, we propose an alternative technique to relax the requirement on the seed pulse length. We show that the modified scheme allows generation of FEL pulses with durations much shorter than that determined by the seed pulse and the slippage effect. The performance of the method, which can easily be implemented at existing seeded FEL user facilities, is evaluated through a campaign of analytical calculations and simulations. For our set of typical seeded FEL parameters, we expect the generation of 1.6 fs long pulses at 26 nm with a peak power of 10 GW using a 20 fs long chirped seed pulse operating at 260 nm.

Keywords

free-electron lasers;short pulses;femtosecond;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UNG - University of Nova Gorica
UDC: 53
COBISS: 5534203 Link will open in a new window
ISSN: 1094-4087
Views: 2126
Downloads: 0
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

URN: URN:SI:UNG
Type (COBISS): Not categorized
Pages: str. 30875-30892
Volume: ǂVol. ǂ27
Issue: ǂno. ǂ21
Chronology: 2019
DOI: 10.1364/OE.27.030875
ID: 11368335