ǂa ǂcomparison of traditional statistical and machine learning classification methods for corporate credit scoring
Domen Bider (Author), Aleš Berk Skok (Mentor)

Abstract

Empirical credit risk modelling

Keywords

banking;crediting;risk;risk management;models;measurements;research;analysis;

Data

Language: English
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UL EF - Faculty of Economics
Publisher: [D. Bider]
UDC: 336.71
COBISS: 25328358 Link will open in a new window
Views: 465
Downloads: 78
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Empirični modeli kreditnega tveganja: primerjava tradicionalnih statističnih metod ter pristopov strojnega učenja na primeru poslovnih strank podjetja
Secondary keywords: bančništvo;kreditiranje;tveganje;obvladovanje tveganj;modeli;meritve;raziskave;analiza;
Type (COBISS): Master's thesis/paper
Thesis comment: Univ. Ljubljana, Ekonomska fak.
Pages: VI, 88, 33 str.
ID: 11381603
Recommended works:
, ǂa ǂcomparison of traditional statistical and machine learning classification methods for corporate credit scoring
, vpliv arbitrarnosti pri izdelavi modela za ocenjevanje kreditnega tveganja fizičnih oseb
, master's thesis