diplomsko delo
Andrej Hafner (Author), Peter Peer (Mentor), Matej Vitek (Co-mentor)

Abstract

Semantična segmentacija je proces označevanja delov slike na nivoju slikovnih elementov. Na podlagi rezultatov lahko razberemo, kaj je pomensko vsebovano na posameznih predelih slike. To delo obravnava segmentacijo beločnice očesa s pomočjo trenutno najbolj uspešnih arhitektur nevronskih mrež. Javno dostopne implementacije arhitektur SegNet, DeepLabv3+, HRNetV2 in UPerNet predelamo in naučimo za segmentacijo beločnice na podatkovnih množicah SBVPI in MASD. Nato ocenimo njihovo uspešnost pri binarni klasifikaciji posameznih slikovnih elementov kot beločnica ali ozadje. Na podlagi metrik mIoU, natančnosti, priklica in f1-ocene se za najbolj uspešnega izkaže model UPerNet, kar v nadaljevanju pokažemo v kvalitativni analizi. Modele testiramo tudi na podmnožici testne množice iz tekmovanja v segmentaciji beločnice SSBC 2019. Rezultate primerjamo z zmagovalnim modelom U-Net, tukaj pa zmaga model SegNet.

Keywords

biometrija;segmentacija beločnice;globoke nevronske mreže;konvolucijske nevronske mreže;računalništvo in informatika;univerzitetni študij;diplomske naloge;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL FRI - Faculty of Computer and Information Science
Publisher: [A. Hafner]
UDC: 004.032.26:57.087.1(043.2)
COBISS: 1538558915 Link will open in a new window
Views: 1420
Downloads: 316
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Sclera segmentation using deep neural networks
Secondary abstract: Semantic segmentation is the process of labeling the images pixel-wise. The result is a mask, from which we can depict what is located in certain parts of the image. In this work we dive into semantic segmentation of sclera, using state-of-the-art neural network arhitectures. Publicly available implementations of SegNet, DeepLabv3+, HRNetV2 and UPerNet are adapted and trained on the SBVPI and MASD datasets. We measure their success at the binary classification of the pixels as sclera or background. For this we use performance metrics mIoU, precision, recall and f1-score. We find the model UPerNet most succesful at this task, which is also show in the qualitative analysis. Models are also tested on a subset of the test set of the sclera benchmarking competition SSBC 2019. The results are compared to the winning model, where Segnet takes the lead.
Secondary keywords: biometry;sclera segmentation;deep neural networks;convolutional neural networks;computer and information science;diploma;
Type (COBISS): Bachelor thesis/paper
Study programme: 1000468
Embargo end date (OpenAIRE): 1970-01-01
Thesis comment: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Pages: 48 str.
ID: 11462192