Abstract
V članku obravnavamo vprašanja, ki izvirajo iz primerov uporabe v krmiljenju robotov. Opazujemo preslikavo ▫$f \colon X \to Y$▫, ki jo lahko razumemo kot kinematično preslikavo iz konfiguracijskega prostora ▫$X$▫ v delovni prostor ▫$Y$▫ robotske roke ali podobne naprave. Preslikavi ▫$f$▫ lahko priredimo število ▫$\mathrm{TC}(f)$▫, ki v grobem predstavlja minimalno število robustnih načrtov gibanja, ki so potrebni, da v celoti krmilimo dano napravo. Konkretni primeri kažejo, da je ▫$\mathrm{TC}(f)$▫ precej občutljivo na majhne spremembe preslikave ▫$f$▫, zlasti na njene singularnosti. Zato v članku največ časa posvetimo ocenam za ▫$\mathrm{TC}(f)$▫, ki jih je mogoče izraziti na podlagi homotopskih invariant ▫$X$▫ in ▫$Y$▫ ter ocenam, ki jih dobimo, če je ▫$f$▫ vlaknenje. Glavni rezultati obsegajo splošno veljavno zgornjo oceno za ▫$\mathrm{TC}(f)$▫, invarianco glede na deformacije domene in kodomene ter kohomološke spodnje meje. Če je ▫$f$▫ vlaknenje izpeljemo še natančnejše ocene z uporabo Lusternik-Schnirelmannove kategorije. Na koncu se še posvetimo pomembnem posebnem priimeru, ko je ▫$f$▫ krovna projekcija.
Keywords
topološka komplesnost;robotika;kinematska preslikava;vlaknenje;topological complexity;robotics;kinematic map;fibration;covering;
Data
| Language: |
English |
| Year of publishing: |
2019 |
| Typology: |
1.01 - Original Scientific Article |
| Organization: |
UL FMF - Faculty of Mathematics and Physics |
| UDC: |
515.14 |
| COBISS: |
18590297
|
| ISSN: |
1532-0073 |
| Views: |
434 |
| Downloads: |
210 |
| Average score: |
0 (0 votes) |
| Metadata: |
|
Other data
| Secondary language: |
Slovenian |
| Secondary title: |
Topološka kompleksnost preslikave |
| Secondary abstract: |
We study certain topological problems that are inspired by applications to autonomous robot manipulation. Consider a continuous map ▫$f \colon X \to Y$▫, where ▫$f$▫ can be a kinematic map from the configuration space ▫$X$▫ to the working space ▫$Y$▫ of a robot arm or a similar mechanism. Then one can associate to ▫$f$▫ a number ▫$\mathrm{TC}(f)$▫, which is, roughly speaking, the minimal number of continuous rules that are necessary to construct a complete manipulation algorithm for the device. Examples show that ▫$\mathrm{TC}(f)$▫ is very sensitive to small perturbations of f and that its value depends heavily on the singularities of ▫$f$▫. This fact considerably complicates the computations, so we focus here on estimates of ▫$\mathrm{TC}(f)$▫ that can be expressed in terms of homotopy invariants of spaces ▫$X$▫ and ▫$Y$▫, or that are valid if f satisfies some additional assumptions like, for example, being a fibration. Some of the main results are the derivation of a general upper bound for ▫$\mathrm{TC}(f)$▫, invariance of ▫$\mathrm{TC}(f)$▫ with respect to deformations of the domain and codomain, proof that ▫$\mathrm{TC}(f)$▫ is a FHE invariant, and the description of a cohomological lower bound for ▫$\mathrm{TC}(f)$▫. Furthermore, if ▫$f$▫ is a fibration we derive more precise estimates for ▫$\mathrm{TC}(f)$▫ in terms of the Lusternik-Schnirelmann category and the topological complexity of ▫$X$▫ and ▫$Y$▫. We also obtain some results for the important special case of covering projections. |
| Secondary keywords: |
topološka komplesnost;robotika;kinematska preslikava;vlaknenje; |
| Pages: |
str. 107-130 |
| Volume: |
ǂVol. ǂ21 |
| Issue: |
ǂno. ǂ2 |
| Chronology: |
Jan. 2019 |
| DOI: |
10.4310/HHA.2019.v21.n2.a7 |
| ID: |
11551950 |