Abstract
The purpose of this paper is to study the existence of weak solutions for some classes of one-parameter subelliptic gradient-type systems involving a Sobolev-Hardy potential defined on an unbounded domain ▫$\Omega_\psi$▫ of the Heisenberg group ▫$\mathbb{H}^n = \mathbb{C}^n \times \mathbb{R} \, (n \ge 1)$▫ whose geometrical profile is determined by two real positive functions ▫$\psi_1$▫ and ▫$\psi_2$▫ that are bounded on bounded sets. The treated problems have a variational structure, and thanks to this, we are able to prove the existence of an open interval ▫$\Lambda \subset (0, \infty)$▫ such that, for every parameter ▫$\lambda \in \Lambda$▫, the system has at least two non-trivial symmetric weak solutions that are uniformly bounded with respect to the Sobolev ▫$HW^{1,2}_0$▫-norm. Moreover, the existence is stable under certain small subcritical perturbations of the nonlinear term. The main proof, crucially based on the Palais principle of symmetric criticality, is obtained by developing a group-theoretical procedure on the unitary group ▫$\mathbb{U}(n) = U(n) \times \{1\}$▫ and by exploiting some compactness embedding results into Lebesgue spaces, recently proved for suitable ▫$\mathbb{U}(n)$▫-invariant subspaces of the Folland-Stein space ▫$HW^{1,2}_0(\Omega_\psi)$▫. A key ingredient for our variational approach is a very general min-max argument valid for sufficiently smooth functionals defined on reflexive Banach spaces.
Keywords
gradient-type system;Heisenberg group;variational methods;principle of symmetric criticality;symmetric solutions;
Data
Language: |
English |
Year of publishing: |
2020 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
UDC: |
517.956 |
COBISS: |
18728025
|
ISSN: |
1050-6926 |
Views: |
426 |
Downloads: |
219 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Type (COBISS): |
Article |
Pages: |
str. 1724-1754 |
Volume: |
ǂVol. ǂ30 |
Issue: |
ǂiss. ǂ2 |
Chronology: |
Apr. 2020 |
DOI: |
10.1007/s12220-019-00276-2 |
ID: |
11758037 |