Abstract
V članku študiramo Liejev kolobar ▫$\mathfrak{nil}_n$▫ vseh strogo zgornje trikotnih ▫$n\times n$▫ matrik nad ▫$\mathbb{Z}$▫. Za ▫$n\leq 8$▫ smo izračunali celotno homologijo tega kolobarja. Dokazali smo, da v ▫$H_\ast(\mathfrak{nil}_n;\mathbb{Z})$▫ nastopa ▫$p^m$▫-torzija za vse praštevilske potence ▫$p^m\leq n-2$▫. Pri ▫$m=1$▫ je Dwyer pokazal, da je ta meja natančna, tj. ▫$H_\ast(\mathfrak{nil}_n;\mathbb{Z})$▫ ne vsebuje ▫$p$▫-torzije za vse ▫$p>n-2$▫. V splošnem pa za ▫$m>1$▫ meja ni natančna, saj smo pokazali, da ▫$H_\ast(\mathfrak{nil}_8;\mathbb{Z})$▫ vsebuje ▫$8$▫-torzijo. Spotoma smo izpeljali še znano dejstvo, da so rangi prostih delov grup ▫$H_\ast(\mathfrak{nil}_n;\mathbb{Z})$▫ enaki Mahonovim številom (=število permutacij množice ▫$[n]$▫ s ▫$k$▫ inverzijami), preko drugačne izpeljave kot jo je sprva imel Kostant. Na koncu smo določili še algebraično strukturo (kupasti produkti) za ▫$H^\ast(\mathfrak{nil}_n;\mathbb{Q})$▫.
Keywords
algebraična kombinatorika;algebraična/diskretna Morseova teorija;aciklično prirejanje;verižni kompleks;homološka algebra;nilpotentna Liejeva algebra;tabela torzije;trikotne matrike;algebraic combinatorics;algebraic/discrete Morse theory;acyclic matching;chain complex;homological algebra;nilpotent Lie algebra;torsion table;triangular matrices;
Data
Language: |
English |
Year of publishing: |
2019 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
UDC: |
512.81 |
COBISS: |
18786137
|
ISSN: |
0092-7872 |
Views: |
478 |
Downloads: |
225 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
Tabela torzije za Liejevo algebro nil[spodaj]n |
Secondary abstract: |
We study the Lie ring ▫$\mathfrak{nil}_n$▫ of all strictly upper-triangular ▫$n\!\times\!n$▫ matrices with entries in ▫$\mathbb{Z}$▫. Its complete homology for ▫$n\!\leq\!8$▫ is computed. We prove that every ▫$p^m$▫-torsion appears in ▫$H_\ast(\mathfrak{nil}_n;\mathbb{Z})$▫ for ▫$p^m\!\leq\!n\!-\!2$▫. For ▫$m\!=\!1$▫, Dwyer proved that the bound is sharp, i.e. there is no ▫$p$▫-torsion in ▫$H_\ast(\mathfrak{nil}_n;\mathbb{Z})$▫ when prime ▫$p\!>\!n\!-\!2$▫. In general, for ▫$m\!>\!1$▫ the bound is not sharp, as we show that there is ▫$8$▫-torsion in ▫$H_\ast(\mathfrak{nil}_8;\mathbb{Z})$▫. As a sideproduct, we derive the known result, that the ranks of the free part of ▫$H_\ast(\mathfrak{nil}_n;\mathbb{Z})$▫ are the Mahonian numbers (=number of permutations of ▫$[n]$▫ with ▫$k$▫ inversions), using a different approach than Kostant. Furthermore, we determine the algebra structure (cup products) of ▫$H^\ast(\mathfrak{nil}_n;\mathbb{Q})$▫. |
Secondary keywords: |
algebraična kombinatorika;algebraična/diskretna Morseova teorija;aciklično prirejanje;verižni kompleks;homološka algebra;nilpotentna Liejeva algebra;tabela torzije;trikotne matrike; |
Pages: |
str. 3567-3578 |
Volume: |
ǂVol. ǂ47 |
Issue: |
ǂno. ǂ9 |
Chronology: |
2019 |
DOI: |
10.1080/00927872.2019.1567751 |
ID: |
11807750 |