doktorska disertacija
Abstract
V disertaciji se ukvarjamo z različnimi problemi, povezanimi s pakiranji. Disertacija je sestavljena iz štirih delov. Prvi del je namenjen grafom, ki imajo enolično pakirno množico največje moči. Najprej predstavimo nekatere lastnosti teh grafov. Nato podamo še dve karakterizaciji dreves z enolično pakirno množico. V drugem delu vpeljemo pojem dimenzije incidenčnosti, ki je neposredno povezana z 2-pakirnim številom grafa, in določimo formulo za njen izračun. Dokažemo, da je problem iskanja incidenčne dimenzije grafa v splošnem NP-poln. Tretji del namenimo pakirnemu kromatičnemu številu leksikografskega produkta grafov. Določimo njegovo spodnjo in zgornjo mejo ter izboljšano zgornjo mejo za primer, ko je prvi faktor v produktu izomorfen poti. V zadnjem delu se posvetimo učinkoviti odprti dominaciji produktov digrafov. Okarakteriziramo učinkovito odprto dominirane direktne in leksikografske produkte digrafov. Pri kartezičnem produktu okarakteriziramo tiste, kjer je prvi faktor usmerjena pot, usmerjen cikel ali zvezda z enim izvorom. Predstavimo tudi karakterizacijo učinkovito odprto dominiranega krepkega produkta, katerega temeljni graf obeh faktorjev je monocikličen graf.
Keywords
pakirna množica;enolično največje pakiranje;dimenzija incidenčnosti;generator incidenčnosti;pakirno kromatično število;leksikografski produkt grafov;učinkovita odprta dominacija;usmerjeni grafi;produkti usmerjenih grafov;disertacije;
Data
Language: |
Slovenian |
Year of publishing: |
2020 |
Typology: |
2.08 - Doctoral Dissertation |
Organization: |
UM FNM - Faculty of Natural Sciences and Mathematics |
Publisher: |
[D. Božović] |
UDC: |
519.17(043.3) |
COBISS: |
39788035
|
Views: |
600 |
Downloads: |
124 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Some graph properties related to packings |
Secondary abstract: |
In this dissertation, different problems related to packings are presented. The dissertation consists of four parts. In the first part, we focus on graphs with the unique packing of maximum cardinality. We first present several general properties for such graphs. Later two characterizations of trees with the unique maximum packing are presented. The second part introduces the concept of incidence dimension, which is directly related to the packing of a graph. We determine the formula for its calculation and prove that the problem of finding the incidence dimension of a graph is NP-complete in the general case. The third part is devoted to the packing chromatic number of the lexicographic product of graphs. Its lower and upper bounds are determined. The improved upper bound for the case where the first factor in the product is isomorphic to a path on $n$ vertices is also presented. The last section deals with the efficient open domination of digraph products. We characterize the efficient open domination direct and lexicographic products of digraphs. Among Cartesian products, those whose first factor is a directed path, a directed cycle, or a single-source star are characterized. Characterization of the efficient open domination strong product digraphs for which the underlying graph of both factors is unicyclic is also presented. |
Secondary keywords: |
Grafi;Disertacije;Lastnosti; |
Type (COBISS): |
Doctoral dissertation |
Thesis comment: |
Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo |
Pages: |
IX, 82 str. |
ID: |
11822177 |