magistrsko delo
Abstract
Vsakodnevno se soočamo z veliko količino podatkov, ki jih generirajo elektronske naprave.
Še več, ta količina se z dneva v dan celo povečuje in temu povečevanju ni videti konca.
Vseprisotne elektronske naprave so korenito spremenile tudi življenje človeka.
Med drugim te naprave beležijo naše odločitve, na podlagi katerih določajo naše preference, spremljajo naše nakupovalne navade v trgovinah, odkrivajo naše finančne navade in obnašanje na družbenih omrežjih.
Zaradi vsega prej omenjenega so se razvile metode, ki omogočajo shranjevanje in obdelavo velike količine podatkov, ki jih danes označujemo z izrazom masivni podatki (angl. big data).
V pričujočem magistrskem delu smo se lotili obdelave podatkov športnikov (natančneje kolesarjev) dobljenih iz športnih ur (npr. Polar, Garmin ipd.), ki spremljajo športnika med treningi.
Na podlagi te analize lahko športni trener določi trende v obnašanju športnika znotraj predpisanih časovnih intervalov, na podlagi česar lahko ta ugotavlja, v kakšni trenutni formi je njegov varovanec in napovedati priporočila za njegov nadaljnji trening.
Keywords
podatkovno rudarjenje;analiza podatkov;vizualizacija;šport;spletne aplikacije;magistrske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2020 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UM FERI - Faculty of Electrical Engineering and Computer Science |
Publisher: |
[R. Šuster] |
UDC: |
004.6:004.9(043.2) |
COBISS: |
40423683
|
Views: |
471 |
Downloads: |
35 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Interactive visualization tools for improving sports training |
Secondary abstract: |
Nowadays we encounter large amount of data generated by electronic devices on a daily basis.
This amount is increasing day by day and there seems to be no end to this increase.
Ubiquitous electronic devices have also radically changed human life.
Among other things, these devices record our decisions, based on which they determine our preferences, monitor our shopping habits in stores, discover our financial habits and behavior on social networks.
Due to all of the above, methods have been developed that allow the storage and processing of large amounts of data, which today are referred to as big data.
In this master's thesis, we started processing the data of athletes (more precisely cyclists) obtained from sports devices (e.g. Polar, Garmin, etc.) that accompany the athlete during training.
Based on this analysis, the sports coach can determine trends in the athlete's behavior within the prescribed time intervals, on the basis of which he can determine the current form of his client and predict recommendations for his further training. |
Secondary keywords: |
data mining;data analysis;visualization;sports;web application; |
Type (COBISS): |
Master's thesis/paper |
Thesis comment: |
Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Računalništvo in informacijske tehnologije |
Pages: |
XI, 55 f. |
ID: |
11889248 |