diplomsko delo

Abstract

V času razcveta informacijske tehnologije in velike količine podatkov algoritmi strojnega učenja predstavljajo možno rešitev za številne inženirske izzive. Diplomsko delo vsebuje pregled osnov umetne inteligence in zadnjih prebojev pri njeni implementaciji v bioinženirstvu, ki zajema iskanje potencialnih zdravil, pripravo biokatalizatorjev, optimizacijo in avtomatizacijo reakcij ter industrijskih bioprocesov.

Keywords

bioinženirstvo;bioinformatika;umetna inteligenca;strojno učenje;digitalni dvojčki;iskanje potencialnih zdravil;priprava biokatalizatorjev;optimizacija bioprocesov;diplomska dela;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL FKKT - Faculty of Chemistry and Chemical Technology
Publisher: [M. Levstek]
UDC: 004.896:66.098(043.2)
COBISS: 22836483 Link will open in a new window
Views: 633
Downloads: 199
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Artificial intelligence in bioengineering
Secondary abstract: In the age of the information technology boom and big data, machine learning algorithms represent a possible solution to many engineering challenges. The diploma thesis includes a review of the basics of artificial intelligence and the latest breakthroughs in the implementation of it into bioengineering, including the search for potential drug candidates, preparation of biocatalysts, optimization and automation of reactions and industrial bioprocesses.
Secondary keywords: bioengineering;artificial intelligence;machine learning;digital twins;bioinformatics;
Type (COBISS): Bachelor thesis/paper
Study programme: 1000372
Embargo end date (OpenAIRE): 1970-01-01
Thesis comment: Univ. v Ljubljani, Fak. za kemijo in kemijsko tehnologijo, UNI Kemijsko inženirstvo
Pages: 33 str.
ID: 11890316