diplomsko delo
Gašper Reher (Author), Sašo Karakatič (Mentor)

Abstract

V diplomskem delu se bom seznanil in preizkusil okrepitveno učenje na časovnih podatkih, natančneje na trgovanju s kriptovalutami. V okviru naloge bom naredil teoretičen pregled okrepitvenega učenja, ogrodji okrepitvenega učenja in pregled knjižnic, ki že obstajajo na področju okrepitvenega učenja ter trgovanja s kriptovalutami. Praktični cilj diplomskega dela pa je izdelava programa, ki se bo na podlagi zgodovinskih vrednosti kriptovalut, naučil, kako trgovati z njimi, tako da zagotovi velik dobiček.

Keywords

okrepitveno učenje;kriptovalute;programski jezik Python;umetna inteligenca;diplomske naloge;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UM FERI - Faculty of Electrical Engineering and Computer Science
Publisher: [G. Reher]
UDC: 004.8(043.2)
COBISS: 39007491 Link will open in a new window
Views: 2476
Downloads: 153
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Trading cryptocurrencies with reinforcement learning
Secondary abstract: In my diploma work I will get acquainted with reinforcement learning and test it on historical data, more specifically on cryptocurrency trading. As part of the assignment, I will provide a theoretical overview of reinforcement learning, reinforcement learning frameworks, and an overview of libraries that already exist in the area of reinforcement learning and cryptocurrency trading. The practical aim of the diploma thesis is to create a program that, based on the historical values of cryptocurrencies, will learn how to trade them so as to generate large profits.
Secondary keywords: Reinforcement learning;cryptocurrencies;Python;artificial intelligent;
Type (COBISS): Bachelor thesis/paper
Thesis comment: Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Informatika in tehnologije komuniciranja
Pages: VI, 43 f.
ID: 11934690