Giovanni Molica Bisci (Author), Dušan Repovš (Author), Luca Vilasi (Author)

Abstract

By using variational techniques we provide new existence results for Yamabe-type equations with subcritical perturbations set on a compact ▫$d$▫-dimensional (▫$d \ge 3$▫) Riemannian manifold without boundary. As a direct consequence of our main theorems, we prove the existence of at least one solution to the following Yamabe-type problem ▫$$\begin{cases} -\Delta_gw + \alpha(\sigma)w = \mu K(\sigma)w^{\frac{d+2}{d-2}} + \lambda (w^{r-1} + f(w)), \quad \sigma \in \mathcal{M} \\ w \in H^2_\alpha(\mathcal{M}), \quad w>0 \; \text{in} \; \mathcal{M}, \end{cases}$$▫ here, as usual, ▫$\Delta_g$▫ denotes the Laplace-Beltrami operator on ▫$(\mathcal{M},g)$▫, ▫$\alpha$▫, ▫$K:\mathcal{M} \to \mathbb{R}$▫ are positive (essentially) bounded functions, ▫$r \in (0,1)$▫, and ▫$f: [0,+\infty) \to [0,+\infty)$▫ is a subcritical continuous function. Restricting ourselves to the unit sphere ▫$\mathbb{S}^d$▫ via the stereographic projection, we furthermore solve some parametrized Emden-Fowler equations in the Euclidean case.

Keywords

No keyword data available

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 517.956
COBISS: 22044675 Link will open in a new window
ISSN: 1019-8385
Views: 371
Downloads: 166
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Type (COBISS): Article
Pages: str. 677-706
Volume: ǂVol. ǂ28
Issue: ǂno. ǂ3
Chronology: 2020
DOI: 10.4310/CAG.2020.v28.n3.a6
ID: 11959893