diplomsko delo
Abstract
Eden od temeljev kriptografije je teorija števil. Kot osnovni gradniki imajo v njej osrednji pomen praštevila in se posledično uporabljajo v mnogih šifrirnih algoritmih. To seveda pomeni, da morajo ti algoritmi imeti dostop do naključnih praštevil. Pri izbiri moramo biti pazljivi, saj nam kitajski izrek o ostankih pri določenih praštevilih omogoča učinkovit izračun tajnih ključev. Takšne napade lahko preprečimo z uporabo "močnih" praštevil. Ko jih vpeljemo, predstavimo dva algoritma za generiranje močnih praštevil in dokažemo njuno pravilnost ter izpeljemo njuno časovno zahtevnost. Algoritma potrebujeta naključna praštevila, zato nadaljujemo z analizo generatorja naključnih števil na osnovi LFSR. Kot gradnik ga lahko uporabimo v generatorju CCSR, na podoben način pa deluje tudi dober moderni generator Mersenne Twister. Zatem se na kratko posvetimo še testom praštevilskosti, kjer se osredotočimo na probabilistične teste. Na koncu sestavne dele združimo v algoritem, ki lahko generira naključna močna praštevila in predstavimo rezultate testiranja za kvaliteto naključnih števil ter hitrost delovanja generatorja.
Keywords
kriptografija;kitajski izrek o ostankih;praštevila;generator naključnih števil;testi praštevilskosti;računalništvo in informatika;univerzitetni študij;diplomske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2020 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FRI - Faculty of Computer and Information Science |
Publisher: |
[A. Gorjan] |
UDC: |
004:511(043.2) |
COBISS: |
29035011
|
Views: |
1234 |
Downloads: |
123 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Generating strong primes |
Secondary abstract: |
One of the foundations of cryptography is number theory. As building blocks, primes are central to the field and are used in many cryptographic algorithms. Of course, this means these algorithms require access to random prime numbers. When choosing them, we must be careful as certain primes allow for the Chinese remainder theorem to be used to efficiently compute our secret keys. These attacks can be prevented by using so called "strong" primes. We study them and present two algorithms for generating such numbers. We prove their correctness and determine their time complexity. Since these algorithms use random primes, we continue with an analysis of LFSR based random number generators. These can be used as building blocks in the CCSR generator and similar ideas are used by the Mersenne Twister generator. After this, we briefly discuss primality tests, focusing on probabilistic tests. These components are then combined into a efficient random strong prime number generator. Finally, the quality and speed of the generator are tested and the results are presented. |
Secondary keywords: |
cryptography;Chinese remainder theorem;prime numbers;random number generator;primality tests;computer and information science;diploma; |
Type (COBISS): |
Bachelor thesis/paper |
Study programme: |
1000468 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za računalništvo in informatiko |
Pages: |
74 str. |
ID: |
12029429 |