diplomsko delo
Abstract
Diplomsko delo Spodbujevalno učenje na problemu igre Pacman prikazuje
mojo motivacijo, ki me je pritegnila k izbiri takšnega projekta. V diplomskem delu smo opravili teoretičen pregled delovanja algoritmov na principu
spodbujevalnega učenja, kjer smo tudi pregledali teoretično ozadje algoritmov Q-učenje in globoko Q-učenje, katera smo tudi implementirali in uporabili na igri Pacman. Naš pristop je bil poseben zaradi primerjave uspešnosti
algoritmov v okolju, kjer imata algoritma zelo omejeno gibanje in vpliv na
delovanje samega akterja. Glede na pridobljeno znanje smo v celoti projekta
implementirali oba algoritma, ki sta se učila na dani igri in nam vrnila zanimive rezultate. Med implementacijo smo doživeli veliko izzivov, nekatere
zabavne, nekatere pa ne, katere smo uspešno premagali. Na podlagi pridobljenih rezultatov smo ugotovili, da sta se kljub omejenem gibanju in vplivanju na karakterjevo obnašanje algoritma odrezala podobno in v nekaterih
primerih bistveno boljše kot amaterski igralci igre Pacman.
Keywords
nevronske mreže;Q-učenje;globoko Q-učenje;strojno učenje;spodbujevalno učenje;računalništvo in informatika;univerzitetni študij;diplomske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2020 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FRI - Faculty of Computer and Information Science |
Publisher: |
[D. Cerovac] |
UDC: |
004.8(043.2) |
COBISS: |
30969091
|
Views: |
860 |
Downloads: |
155 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Pacman implementation using reinforcement learning |
Secondary abstract: |
Bachelors project Pacman implementation using reinforcement learning, shows
the reason and motivation that made me choose this project. In bachelors
project we went over theoretical principals of Reinforcement learning algorithms, where we explained theoretical background of Q-learning and Deep
Q-learning which we implemented and used on a game Pacman. Our approach was special because of our comparison of success between these two
algorithms which were implemented on a game with restricted ability to impact on the movement and decision of our agent. Based on the accumulated
knowledge in the course of our project we implemented both algorithms, that
when finished returned some interesting results. Throughout our implementation we experienced a lot of challenges, some more fun than others, but
in the end we successfully resolved all of them. Based on gathered results
we found out that despite restricted movement of our agent, the algorithms
were in average approximately as good or in some cases drastically better
than average amateur Pacman players. |
Secondary keywords: |
neural networks;Q-learning;deep Q-learning;machine learning;reinforcement learning;computer and information science;diploma thesis; |
Type (COBISS): |
Bachelor thesis/paper |
Study programme: |
1000468 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za računalništvo in informatiko |
Pages: |
35 str. |
ID: |
12033197 |