Abstract

We consider a nonlinear elliptic equation driven by the Robin ▫$p$▫-Laplacian plus an indefinite potential. In the reaction we have the competing effects of a strictly ▫$(p-1)$▫-sublinear parametric term and of a ▫$(p-1)$▫-linear and nonuniformly nonresonant term. We study the set of positive solutions as the parameter ▫$\lambda > 0$▫ varies. We prove a bifurcation-type result for large values of the positive parameter ▫$\lambda$▫. Also, we show that for all admissible ▫$\lambda > 0$▫, the problem has a smallest positive solution ▫$\overline{u}_\lambda$▫ and we study the monotonicity and continuity properties of the map ▫$\lambda \mapsto \overline{u}_\lambda$▫.

Keywords

local minimizers;p-Laplacian;strong comparison;positive solutions;nonlinear regularity;minimal solution;indefinite potential;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 517.956
COBISS: 32039427 Link will open in a new window
ISSN: 2189-3756
Views: 297
Downloads: 45
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Type (COBISS): Article
Pages: str. 1217-1236
Volume: ǂVol. ǂ5
Issue: ǂno. ǂ15
Chronology: 2020
ID: 12072181