Abstract
V učbeniku so predstavljene nekatere veje diskretne matematike, ki so še posebej uporabne v računalništvu. Tako se sprehodimo skozi logiko, s posebnim poudarkom na dokazu. Sledijo teorije, pri katerih igra poglavitno vlogo matematična indukcija oziroma bolj splošno induktivna posplošitev. Spoznamo osnove kombinatorike in teorije števil. Predstavljene so rekurzivne relacije, s katerimi lahko opišemo ponavljajoče se procese. To nam omogoča tudi vrednotenje algoritmov glede na čas potreben za njegovo izvedbo. Relacije, ki so podmnožice kartezičnega produkta poljubnih množic, predstavljajo širok vir presenetljivih rezultatov. Eden izmed njih rezultira v mrežah in njihovih posebnih predstavnikih Booleovih algebrah. Končamo z grafi, ki predstavljajo neverjetno uporaben matematični model za simuliranje procesov iz realnega življenja.
Keywords
uporaba v računalništvu;diskretna matematika;logika;Booleove mreže;Matematika;Visokošolski učbeniki;Kombinatorika;
Data
Language: |
Slovenian |
Year of publishing: |
2020 |
Typology: |
2.03 - Reviewed University, Higher Education or Higher Vocational Education Textbook |
Organization: |
UM FERI - Faculty of Electrical Engineering and Computer Science |
Publisher: |
Univerzitetna založba Univerze |
UDC: |
519.1:004.421.2(075.8)(0.034.2) |
COBISS: |
34068995
|
ISBN: |
978-961-286-400-2 |
Views: |
702 |
Downloads: |
192 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Discrete Structures |
Secondary abstract: |
This text book brings some branches of Discrete mathematics, which are very applicable in Computer science. As such we start with logic and special emphasis on the proof. The chapter on inductive processes follows. We present the fundamentals of counting and number theory. One part is devoted to recurrence relations, that are a basic tool to describe the processes that are repeating. This enables to quantify the algorithms with respect to the time used by them for their execution. Relations are subsets of the Cartesian product of two sets and present a surprising palette of different results. One direction results in latices and Boolean algebras. We end with graphs. A tool that is incredibly useful mathematical model for all sorts of real life processes. |
Secondary keywords: |
logic;induction;combinatorics;recursive relation;time complexity;number theory;relation;latice;Boolean algebra;graph; |
Type (COBISS): |
Higher education textbook |
Pages: |
1 spletni vir (1 datoteka PDF (II, 292 str.)) |
DOI: |
10.18690/978-961-286-400-2 |
ID: |
12106622 |