magistrsko delo
Abstract
Destilacija znanja je pristop izdelave lahkih modelov s prenosom znanja iz globokih modelov, ki imajo veliko število parametrov, so časovno zahtevni in imajo zelo visoko natančnost. V magistrskem delu ovrednotimo pristop destilacije znanja na področju biometrije očesa. Izdelamo nov postopek pridobitve lahkega modela za segmentacijo beločnice s kombinacijo dveh pristopov, destilacije znanja in rezanja filtrov, ter pokažemo, da sta oba pristopa ključna za uspeh našega postopka. S predstavljenim izvirnim postopkom pridobitve lahkega modela odstranimo 74 % operacij s plavajočo vejico za eno sklepanje in 73,2 % parametrov ter izgubimo 1,27 % natančnosti, poleg tega pa odstranimo 2-krat toliko parametrov kot najsodobnejši model in v primerjavi izgubimo le 1,74 % natančnosti. V luči te primerjave na koncu identificiramo možne nadgradnje, ki imajo potencial za izboljšanje našega pristopa.
Keywords
destilacija znanja;rezanje filtrov;konvolucijske nevronse mreže;beločnica;segmentacija;računalništvo;računalništvo in informatika;magisteriji;
Data
| Language: |
Slovenian |
| Year of publishing: |
2020 |
| Typology: |
2.09 - Master's Thesis |
| Organization: |
UL FRI - Faculty of Computer and Information Science |
| Publisher: |
[M. Bizjak] |
| UDC: |
004.93:57.087.1(043.2) |
| COBISS: |
37218051
|
| Views: |
766 |
| Downloads: |
130 |
| Average score: |
0 (0 votes) |
| Metadata: |
|
Other data
| Secondary language: |
English |
| Secondary title: |
Knowledge distillation of deep learning models for sclera biometrics |
| Secondary abstract: |
Knowledge distillation is a technique for the development of lightweight models by transferring knowledge from a deep model with high memory footprint and high computational complexity. In this work we evaluate knowledge distillation for eye biometrics.
We propose a new algorithm for creating a lightweight model for sclera segmentation by combining knowledge distillation with filter pruning and show that both techniques are key to achieving good results. With the presented algorithm we remove 74% floating point operations needed for one inference and 73.2% parameters and sacrifice 1.27% of the accuracy. In addition, we remove twice as many parameters as the current state-of-the-art filter pruning approach and in comparison sacrifice 1.74% of the accuracy.
In the light of this comparison, we identify possible improvements that have a potential to further increase the accuracy of our algorithm. |
| Secondary keywords: |
knowledge distillation;filter pruning;convolutional neural networks;sclera;segmentation;computer science;computer and information science;master's degree; |
| Type (COBISS): |
Master's thesis/paper |
| Study programme: |
1000471 |
| Embargo end date (OpenAIRE): |
1970-01-01 |
| Thesis comment: |
Univ. v Ljubljani, Fak. za računalništvo in informatiko |
| Pages: |
53 str. |
| ID: |
12133081 |