magistrsko delo
Abstract
Zbiranje podatkov preko spletnega vprašalnika je v današnjem času pravzaprav stalnica,
saj gre za hiter in učinkovit način za zajemanje podatkov iz širše populacije. Pogosto pa
so vprašalniki predolgi in tudi kompleksne, zato ne zajemamo ciljne populacije in ne
dobimo prave slike o raziskovanem stanju. Poseben primer je zajemanje podatkov z
namenom ocene primernosti uporabe zalo-zmogljivega računalništva v oblaku za mala
in srednje velika podjetja. Ta vprašalnik je namenjen zajemu vhodnih podatkov za
večkriterijski model, ki omogoča oceno potenciala, ki v praksi ni v celoti zaživel. Izhajamo
iz predpostavke, da je tudi kompleksnost vprašalnika vplivala na šibek odziv
respondentov. Iz tega smo razvili raziskovalno vprašanje: »Ali je mogoče vprašalnik
skrajšati s pomočjo strojnega učenja?«. Cilj magistrske naloge je, da s pomočjo metod
strojnega učenja skušamo ugotoviti katera vprašanja največ prispevajo k oceni
potenciala ter na ta način skrajšati vprašalnik.
Problem smo reševali z uporabo metod strojnega učenja. V ta name smo analizirali
večkriterijski model, vprašalnik za zajemanje podatkov, odgovore respondentov ter v
programu Orange , ki poleg metod strojnega učenja vsebuje tudi vizualizacijo podatkov,
IV
analizirali prispevek posameznega vprašanja h končni oceni. Rezultati kažejo, da imajo
nekateri kriteriji večji vpliv na končno oceno potenciala uporabe zelo-zmogljivega
računalništva v oblaku, vendar se ti kriteriji nanašajo na splošne atribute primerov (npr.
država, vrsta organizacije). Ob izločitvi trivialnih kriterijev napoved modela še vedno ni
dovolj natančna, zato je edini zaključek, ki ga lahko potegnemo, da na pričujočih
podatkih ni bilo možno izbrati takega nabora kriterijev oziroma vprašanj, s katerimi bi
lahko natančno ocenili potencial uporabe zelo-zmogljivega računalništva v oblaku.
Keywords
diplomske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2020 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UM FOV - Faculty of Organizational Sciences |
Publisher: |
[D. Rodič] |
UDC: |
004.8 |
COBISS: |
44128515
|
Views: |
467 |
Downloads: |
42 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Use of machine learning techniques for improvement of online questionnaire |
Secondary abstract: |
Collecting data through an online questionnaire is an everyday task these days, as it is
a fast and efficient way to capture data from the general population. However, the
questionnaires are often too long and complex, so they do not cover the target
population and do not get a true picture of the research situation. Such an example is
data capture to assess the suitability of using high-performance cloud computing for
small and medium-sized businesses. This questionnaire is intended to capture input
data for a multi-criteria model that allows the assessment of a potential that has not
been fully implemented in practice. We come from the assumption that the complexity
of the questionnaire also influenced the weak response of the respondents. Because of
that, we posed following research question: "Is it possible to shorten the questionnaire
with the help of machine learning?". The aim of this master's thesis is to use machine
learning methods to find out which questions contribute the most to the assessment of
potential and thus shorten the questionnaire.
To solve a problem we used the machine learning methods. For this purpose, we
analyzed a multi-criteria model, a questionnaire for data acquisition, respondents
VI
answers and in the Orange program, which in addition to machine learning methods
also includes data visualization, we analyzed the contribution of each question to the
final assessment.
The results show that some criteria have a greater impact on the final assessment of the
potential use of high-performance computing in cloud, but these criteria relate to the
general attributes of the cases (e.g., country, organization size).
Excluding general criteria, the model prediction is still not accurate enough, so the only
conclusion we can draw is that it was not possible to select such a set of criteria or
questions from the presented data that could accurately assess the potential use of high-performance computing in cloud. |
Secondary keywords: |
- HPC;- Cloud;- machine learning;- data mining;- Orange (program).; |
Type (COBISS): |
Master's thesis/paper |
Thesis comment: |
Univ. v Mariboru, Fak. za organizacijske vede |
Pages: |
149 f. |
ID: |
12172462 |