magistrsko delo
Abstract
Zanima nas, ali lahko s šestilom in ravnilom konstruiramo trikotnik $\triangle ABC$, če imamo v ravnini podane tri točke iz množice \{oglišča, razpolovišča stranic, nožišča višin, presečišča stranic s simetralami kotov, središči očrtane in včrtane krožnice, višinska točka, težišče\}. Omenjena množica nam ponuja $139$ netrivialnih in bistveno različnih možnih trojic točk, npr.\ trojica $\{A, B, C\}$ je trivialna, trojico dveh oglišč in težišča pa lahko zapišemo kot $\{A, B, G\}, \{B, C, G\}$ ali $\{A, C, G\}$, kar so simetrični oz.\ analogni konstrukcijski problemi. Izmed teh trojic je $74$ takih, ki omogočajo konstrukcijo trikotnika $\triangle ABC$, poteki konstrukcij so zapisani v magistrskem delu.
Keywords
konstrukcija trikotnika;oglišča;središče očrtane krožnice;razpolovišča stranic;težišče;nožišča višin;višinska točka;središče včrtane krožnice;presečišča simetral kotov z nasprotno stranico;
Data
Language: |
Slovenian |
Year of publishing: |
2020 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
Publisher: |
[A. Kozinc] |
UDC: |
514 |
COBISS: |
50383875
|
Views: |
1434 |
Downloads: |
164 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Triangle constructions with three located points |
Secondary abstract: |
We would like to construct a triangle $\triangle ABC$, if we know positions of three points from the set \{vertices, feet of the medians, feet of the altitudes, feet of the internal angle bisectors, circumcenter, incenter, orthocenter, centroid\}. Then we have $139$ problems, all non-trivial and significantly distinct. For example, the triple of points $\{A, B, C\}$ is trivial, the selection of the triple of points to be two vertices and the centroid of a triangle could be listed as $\{A, B, G\}, \{B, C, G\}$ or $\{A, C, G\}$, which are all analogous. Only $74$ of these problems are solvable and we present their constructions. |
Secondary keywords: |
triangle construction;vertices;circumcenter;feet of the medians;centroid;feet of the altitudes;orthocenter;feet of the internal angle bisectors;incenter; |
Type (COBISS): |
Master's thesis/paper |
Study programme: |
0 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Pedagoška matematika |
Pages: |
IX, 121 str. |
ID: |
12245773 |