magistrsko delo
Anja Kozinc (Author), Klemen Šivic (Mentor)

Abstract

Zanima nas, ali lahko s šestilom in ravnilom konstruiramo trikotnik $\triangle ABC$, če imamo v ravnini podane tri točke iz množice \{oglišča, razpolovišča stranic, nožišča višin, presečišča stranic s simetralami kotov, središči očrtane in včrtane krožnice, višinska točka, težišče\}. Omenjena množica nam ponuja $139$ netrivialnih in bistveno različnih možnih trojic točk, npr.\ trojica $\{A, B, C\}$ je trivialna, trojico dveh oglišč in težišča pa lahko zapišemo kot $\{A, B, G\}, \{B, C, G\}$ ali $\{A, C, G\}$, kar so simetrični oz.\ analogni konstrukcijski problemi. Izmed teh trojic je $74$ takih, ki omogočajo konstrukcijo trikotnika $\triangle ABC$, poteki konstrukcij so zapisani v magistrskem delu.

Keywords

konstrukcija trikotnika;oglišča;središče očrtane krožnice;razpolovišča stranic;težišče;nožišča višin;višinska točka;središče včrtane krožnice;presečišča simetral kotov z nasprotno stranico;

Data

Language: Slovenian
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UL FMF - Faculty of Mathematics and Physics
Publisher: [A. Kozinc]
UDC: 514
COBISS: 50383875 Link will open in a new window
Views: 1434
Downloads: 164
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Triangle constructions with three located points
Secondary abstract: We would like to construct a triangle $\triangle ABC$, if we know positions of three points from the set \{vertices, feet of the medians, feet of the altitudes, feet of the internal angle bisectors, circumcenter, incenter, orthocenter, centroid\}. Then we have $139$ problems, all non-trivial and significantly distinct. For example, the triple of points $\{A, B, C\}$ is trivial, the selection of the triple of points to be two vertices and the centroid of a triangle could be listed as $\{A, B, G\}, \{B, C, G\}$ or $\{A, C, G\}$, which are all analogous. Only $74$ of these problems are solvable and we present their constructions.
Secondary keywords: triangle construction;vertices;circumcenter;feet of the medians;centroid;feet of the altitudes;orthocenter;feet of the internal angle bisectors;incenter;
Type (COBISS): Master's thesis/paper
Study programme: 0
Embargo end date (OpenAIRE): 1970-01-01
Thesis comment: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Pedagoška matematika
Pages: IX, 121 str.
ID: 12245773
Recommended works:
, magistrsko delo
, diplomsko delo
, diplomsko delo