puncture properties, solubility, and swelling degree
Patricia Cazón (Author), Manuel Vázquez (Author), Gonzalo Velazquez (Author)

Abstract

The aim of this study was to develop composite films based on bacterial cellulose, glycerol, and poly(vinyl alcohol) with improved optical and mechanical properties and good UV-barrier property. The interaction among the compounds was analyzed using Fourier transform infrared spectroscopy, scanning electron microscopy, ther- mogravimetry, and differential scanning calorimetry. The mechanical properties (toughness, burst strength, and distance to burst), solubility, water adsorption, and light barrier properties of the composite films were evaluated. Polynomial models obtained allowed us to predict the behavior of these properties. Poly(vinyl alcohol) showed a reinforcing effect on the bacterial cellulose matrix, while glycerol showed a noticeable plasticizing behavior. The bacterial cellulose-based composites showed toughness values ranging from 0.22 to 2.60 MJ/m3. The burst strength values obtained ranged between 43.74 and 2105.52 g. The distance to burst ranged from 0.39 to 4.94 mm. The film solubility on water ranged from 9.37 to 31.65%, and the water retention ranged from 78.26 to 364.78%. Glycerol decreased the transmittance in the UV region, improving the UV- barrier properties of the films, while poly(vinyl alcohol) improved the transparency and opacity values of the samples. The transmittance in the UV regions (A, B, and C) ranged from 1 to 48.51%, increasing with the poly(vinyl alcohol) concentration.

Keywords

DSC;FT-IR;SEM;UV protection;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UNG - University of Nova Gorica
UDC: 54
COBISS: 42578179 Link will open in a new window
ISSN: 1525-7797
Views: 1504
Downloads: 0
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

URN: URN:SI:UNG
Type (COBISS): Not categorized
Pages: str. 3115-3125
Volume: ǂVol. ǂ20
Issue: ǂiss. ǂ8
Chronology: 2019
DOI: 10.1021/acs.biomac.9b00704
ID: 12256783