magistrsko delo
Abstract
V magistrskem delu je opisano področje avtomatiziranega trgovanja z algoritmičnim pristopom, ki temelji na odločitvah napovednih modelov, katerih znanje je pridobljeno s pomočjo strojnega učenja. Opisane je delo z podatki, metode strojnega učenja in izdelava napovednih modelov v programskem jeziku Python. Poudarek je na pridobivanju, manipulaciji in uporabi vhodnih podatkov, ter optimizaciji napovednega modela za dosego boljših odločitev na še ne videnih podatkih. V sklopu magistrske naloge smo izdelali programsko opremo algoritmične narave, ki uporablja sožitje pogojev, ki jih trgovalni instrument mora zadovoljiti, ter odločitve dveh napovednih modelov za odpiranje ali zapiranje trgovalnih pozicij.
Keywords
trgovanje;delnice;strojno učenje;napovedni modeli;magistrske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2021 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UM FERI - Faculty of Electrical Engineering and Computer Science |
Publisher: |
[L. Štrakl] |
UDC: |
004.85:004.777(043.2) |
COBISS: |
63069955
|
Views: |
490 |
Downloads: |
74 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Automated trading with a smart prediction model |
Secondary abstract: |
This master's thesis describes the topic of automated trading with the use of an algorithmic approach based on decisions made by smart prediction models. The models possess the knowledge derived from machine learning techniques. We describe the used data set and techniques used for machine learning and implementation of a smart prediction model using the Python programming language. The emphasis is on the gathering, transformation and usage of input data as well as on the optimization of the prediction model to get the best results possible from new data sets. The product of the thesis is a software based on the algorithm that requires that certain market place conditions are met with a conjunction of smart model predictions to open or close the trading positions |
Secondary keywords: |
Trading;Forex;Stocks;machine learning;prediction model; |
Type (COBISS): |
Master's thesis/paper |
Thesis comment: |
Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Računalništvo in informacijske tehnologije |
Pages: |
VII, 66 f. |
ID: |
12613660 |